• Title/Summary/Keyword: mixing front

Search Result 118, Processing Time 0.022 seconds

A Study on the Improvement for Mixing Conditions of Foundry Sand by Orthogonal Array (직교표에 의한 주물사 배합조건의 개선)

  • 이상도;권영일
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.4 no.5
    • /
    • pp.1-10
    • /
    • 1981
  • The purpose of this study is to cut down cost of production and improve the productivity of industry through quality improvement of castings and reduction of defectives by applying the experimental design to the foundry sand mixing operation done at molding department in the foundry. Among the related foundry sand mixing factors which have an effect on casting the experiment of which factors have a dominant effect on quality improvement was performed between two different levels by means of "$2^n$ type orthogonal array." The results cail be summarized as follows ; (1) The optimum conditions per each foundry sand mixing between two different levels proved to be such as $A_2$(used sand) : 24 unit (172.8kg), $B_2$(unused sand ) : 2 unit (15.0kg), $C_2$(binder) : 2.5 unit (4.4kg). $D_2$(addition agent) : 1 unit(1.4kg) and $F_1$(moisture) : 7.4%(14.6kg). (2) As a result of the application of experimental design, the fraction defective during the foundry sand mixing operation turned out to be reduced front 6.6% to 2.04%. (3) For the purpose of cost-down, It was found that the optimum level decision of foundry sand mixing for various castings is required to be made by means of experimental design.al design.

  • PDF

NUMERICAL ANALYSIS ON THE MIXING OF A PASSIVE SCALAR IN THE TURBULENT FLOW OF A SMALL COMBUSTOR BY USING LARGE EDDY SIMULATION (큰에디모사법을 이용한 소형 연소기의 난류 유동장 내 스칼라 혼합에 대한 수치해석)

  • Choi, H.S.;Park, T.S.;Suzuki, K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.67-74
    • /
    • 2006
  • The characteristics of turbulent flow and mixing in a small can type combustor are investigated by means of Large Eddy Simulation (LES). Attention is paid for a combustor having a baffle plate with oxidant injection and fuel injection holes and study is made for three cases of different baffle plate configurations. From the result, it is confirmed that mixing is promoted by interaction between the jets during their developing process and large vortical flows generated in the vicinity of the combustor wall or fuel jet front. This particular flow feature is effective to accelerate the slow mixing between fuel and oxidant suffering from low Reynolds number condition in such a small combustor. In particular, the vortical flow region ahead of fuel jet plays an important role for rapid mixing. Discussion is made for the time and space averaged turbulent flow and scalar quantities which show peculiar characteristics corresponding to different vortical flow structures for each baffle plate shapes.

Quadrature VCO as a Subharmonic Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • This paper proposes two types of subharmonic RF receiver front-end (called LMV) where, in a single stage, quadrature voltage-controlled oscillator (QVCO) is stacked on top of a low noise amplifier. Since the QVCO itself plays the role of the single-balanced subharmonic mixer with the dc current reuse technique by stacking, the proposed topology can remove the RF mixer component in the RF front-end and thus reduce the chip size and the power consumption. Another advantage of the proposed topologies is that many challenges of the direct conversion receiver can be easily evaded with the subharmonic mixing in the QVCO itself. The intermediate frequency signal can be directly extracted at the center taps of the two inductors of the QVCO. Using a 65 nm complementary metal oxide semiconductor (CMOS) technology, the proposed subharmonic RF front-ends are designed. Oscillating at around 2.4 GHz band, the proposed subharmonic LMVs are compared in terms of phase noise, voltage conversion gain and double sideband noise figure. The subharmonic LMVs consume about 330 ㎼ dc power from a 1-V supply.

Optical Design of Light Guide Plate Material for Slim Liquid Crystal Display (박형 디스플레이를 위한 도광판의 광학설계)

  • Gong, Taewon;Choi, Gyu Jin;Kwon, Jin Hyuk;Park, In Shik;Lee, Sunmook;Woo, DongJin;Gwag, Jin Seog
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.233-238
    • /
    • 2014
  • In this paper, in order to achieve slim and light liquid crystal display, we examine the optical conditions that can obtain uniform light with higher optical efficiency over whole light guide plate (LGP) through simulation. Furthermore, to overcome the issues of hot spot in front of red, green, and blue light emitting diodes (RGB LEDs) source and non-uniform color mixing, we propose four shaped color mixing bars tied up with the LGP and check the optical characteristics of the LGP with them by simulation. Consequently, we could know the optical conditions of improving optical efficiency and optical uniformity in the LGP through the optical design. Also we confirmed that the issues of the hot spot and non-uniform color mixing in edge type LED could be solved by using the ${\bigwedge}$-shaped window color mixing bar.

Numerical Study on effective Mixing Chemical Liquid using Hydraulic Energy in a Water Treatment Plant (정수장내 수류에너지를 이용한 액체약품의 효율적인 혼화를 위한 수리해석)

  • Song K. S.;Oh S. Y.;Park Y. B.
    • Journal of computational fluids engineering
    • /
    • v.7 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • The present study is developed device that effectively mixes raw water and chemicals by using the residual head of fluid in the front pipe of flocculation basin, and performed non-dimensional analysis and presented design standard to apply to water plants that have different equipment capacity. The variables for design are a proper ratio between an outer diameter of deflector and a diameter of pipe, a distance between deflector and orifice and a determination of orifice diameter for an optimal mixing. Numerical study has analyzed flow field on a basis of turbulent intensity in an orifice downstream. As Reynolds number of In-Line Orifice was increased from identical design variable, the turbulent intensity of pipe center was no changed almost.

An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine (헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구)

  • 김봉곤;하종률;권순석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

A Development of a Transient Hydrogen Generation Model for Metal-Water Interactions

  • Lee, Jin-Yong;Park, Goon-Cherl;Lee, Byung-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.549-558
    • /
    • 2000
  • A transient model for hydrogen generation in molten metal-water interactions was developed with separate models for two stages of coarse mixing and stratification. The model selves the mechanistic equations (heat and mass transfer correlation, heat conduction equation and the concentration diffusion equation) of each stage with non-zero boundary conditions. Using this model, numerical simulations were performed for single droplet experiments in the Argonne National Laboratory tests and for FITS tests that simulated dynamic fragmentation and stratification. The calculation results of hydrogen generation showed better agreement to the experiment data than those of previous works. It was found from the analyses that the steam concentration to be reached at the reaction front might be the main constraint to the extent of the metal droplet oxidized. Also, the hydrogen generation rate in the coarse mixing stage was the higher than that in the stratification stage. The particle size was the most important factor in the coarse mixing stage to predict the amount of hydrogen generation.

  • PDF

Numerical Analysis of Circulation Due to Density Current in a Small Reservoir (소규모 저수지에서 밀도류 순환의 수치해석)

  • Yoon, Tae Hoon;Han, Woon Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.105-114
    • /
    • 1993
  • The ciculation due to bottom density current produced by a dense inflow into a small reservoir is analysed by numerical scheme. Before the front of the density current arrives at the downstream end, the mixing in the reservoir is mainly caused by the anticlockwise vortex formed at the downstream of plunging point along the movement of bottom density current. Upon the arrival of the front of the density current at the downstream end an internal surge is created through an internal hydraulic jump. With repeated propagation of the internal surge back and forth the mixing in the reservoir is progressed and the thickness of dense layer is increased upward. The dilution of the overflow at downstream end is found to depend on inflow densimetric Froude number, reservoir length and elapsed time. The time required for the overflow to attain a specified dilution increases as reservoir length increases and Fre decreases.

  • PDF

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air-stream Conditions

  • Lee, Choong-Won;Youn, Hyun-Jin;Lee, Tae-Hee;Lee, Geun-sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.749-752
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its spray characteristics and devising a means of mixing fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and, in the high pressure conditions, the jet penetrations are similar each other. In the dual hole injectors, the jet penetrations of rear orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rear orifice is increased because of the drag reduction created by the jet column of the front orifice. And, because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual hole injector is much larger than the jet penetration of single hole injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF