• Title/Summary/Keyword: mixing factors

Search Result 582, Processing Time 0.025 seconds

A Study on the Factors to Minimize the Residual Aluminum in Filtered Water (정수처리시 잔류알루미늄 농도를 최소화하기 위한 영향인자 고찰)

  • 고영송;우달식;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.2
    • /
    • pp.1-9
    • /
    • 1993
  • In public water supply systems, Alum and/or PAC being used as a coagulant. It is well known that their use increased frequently the concentration of residual aluminum in filtered water upon operating conditions. This study was conducted to find the optimum conditions that both the concentration of residual aluminum and turbidity are minimized by changing such factors as pH, temperature, alum dosage, mixing rate, alkalinity and hardness. The results can be summarized as follows: The pH values for the minimum concentration of residual aluminum and turbidity as a given experimental condition were found at pH 6 and pH 7 respectively, the apparent clarity was best at pH 8. The floc settling rate was the greatest at pH 6.5, but the turbidity was high at the same condition. The more alum dosage, the higher the concentration of residual aluminum. However the alum dosage less than 15 mg/l tend to decrease in turbidity. Restabilization and enmeshment occurred near 15 mg/l and 20 mg/l of alum dose respectively. With the increase of mixing rate (rapid and slow), the concentration of residual aluminum and turbidity are increased and the same trend was found in increment of mixing time. At low water temperature, the concentration of residual aluminum was decreased, but turbidity was increased. It was confirmed that alkalinity had an effect on the coagulation efficiency, but hardness did not.

  • PDF

Simulation of the Gas Exchange Process in a Two - Stroke Cycle Diesel Engine (2행정 사이클 디젤기관의 가스교환과정 시뮬레이션)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.104-112
    • /
    • 1994
  • The scavenging efficiency has a great influence on the performance of a diesel engine, especially slow two-stroke diesel engines which are usually used as a marine propulsion power plant. And this is greatly affected by the conditions in the cylinder, scavenging manifold and exhaust manifold during the gas exchange process. There are many factors to affect on the scavenging efficiency and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging efficiency, due to the high costs associated with redesign and testing. In this paper, a three-zone scavenging model for two-stroke uniflow engines was developed to link a control-volume-type engine simulation program for performance prediction of long-stroke marine engines. In this model it was attempted to simulate the three different regions perceived to exist inside the cylinder during scavenging, namely the air, mixing and combystion products regions, by modeling each region as a seperate control volume. Finally the scavenging efficiency was compared with three type of scavenging modes, that is, pure displacement, partial mixing and prefect mixing.

  • PDF

Environmental Factors and Catch Fluctuation of Set-Net Grounds in the Coastal Waters of Yeosu (여수연안 정치망 어장의 환경요인과 어항 변동에 관한 연구)

  • Kim, Dong-Soo;Rho, Hong-Kil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • In order to investigate the environmental properties of set net grounds located in the coastal waters of Yeosu, oceanographic observations on the fishing grounds were carried out by the training ship of Yeosu Fisheries University from Jun. 1988 to Dec. 1990. The resultes obtained are summarized as follows; 1) The water mass in the fishing grounds were divided into the inner water (29.50-31.00$\textperthousand$), the mixed water (31.10-32.70$\textperthousand$) and the offshore water (32.70-34.30$\textperthousand$) according to the distribution of salinity from T-S diagram plotted all salinity data observed from Jun. 1988 to Dec. 1990. In spring the mixing water prevailed and in summer the inner and mixing water. But in autumn and winter the mixing and offshore waters prevailed. 2) The inner water which was formed by land water from the river of Somjin and the precipitation in the Yeosu district flowed southerly along the coast of Dolsando and spread south-easterly in the vicinity of Kumodo. The inner water and offshore water which supplied from the vicinity of Sorido and Yokchido formed the thermal front and halofront. 3) As the mixing water flowing from the western sea of Cheju to the southern coast of korea was low in temperature, the water mass of low temperature which appeared at the offshore bottom of Sorido in summer was considered not to be the Tsushima warm current. 4) As vertical mixing was made frequently in spring, autumn and winter, the differences in temperature and salinity between surface and bottom was respectively small. In summer, however, the mixing was not made because of the inner water expanded offshore through the space between surface and 10m layer and so a thermocline of $2.0^{\circ}C$/10m and halocline of 4.0$\textperthousand$/10m respectively in vertical gradient was formed. 5) In the vicinity of Dolsando and Kum a water low in salinity prevailed, but in the vicinity of Namhaedo and YoKchido the reverse took place. The inner and mixing waters formed at these arease was limited to the observation area not to spread widely.

  • PDF

Calculation of the flow field in the cylinder of the diesel engine for different bowl shapes and swirl ratios (보올형상과 선회비에 따른 디젤기관 실린더내의 유동장 해석)

  • 최영진;양희천;유홍선;최영기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.50-66
    • /
    • 1991
  • There are many factors which influence on the performance of a diesel engine. The piston bowl shape and swirl ratio are important factors to enhance the fuel-air mixing and flame propagation. In this study, calculations of the flow field in the cylinder of the diesel engine were carried out using the CONCHAS-SPRAY code for different bowl shapes and swirl ratios. In the case of constant swirl ratio, vortices which affect fuel-air mixing, evaporation and flame propagation are generated more strongly and consistently in the bowl-piston type combustion chamber than in the flat piston type. With this strong squish effect, injected fuel droplets are widely diffused and rapidly evaporated in the bowl-piston type combustion chamber. Especially a strong squish is developed and large and strong vortices are generated in the edge cutted bowl piston chamber. As the swirl ratio increases, it is found that a large and strong squish and vortices are generated in the combustion chamber and also fuel droplets are diffused into the entire combustion chamber.

  • PDF

A Study on the Effects of Swirl Flow Generated by SCV on the Combustion Characteristics of the D.I. Diesel Engine (SCV에 의한 스윌 유동이 직분식 디젤 엔진의 연소에 미치는 영향에 관한 연구)

  • 정재우;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.31-39
    • /
    • 2002
  • Recently, many researches have been performed to improve the performance of the combustion and emission in a D.I.Diesel engine. One of the main factors effect on the characteristics of combustion is the characteristic of air-fuel mixing. Thus, swirl flow has been used widely to improve the air-fuel mixing in a D.I.Diesel engine. Since this swirl flow has interaction with other factors, in this study, the characteristics of the combustion and the flame effected by the swirl flow generated by SCV was investigated. From this experiment, the interactions of the swirl flow and the injection timing made clear. In addition, the effects of swirl and injection timing on the diffusion flame were clarified.

The Study on the Mix Design of the Super Flowing Concrete (초유동 콘크리트의 배합설계에 관한 연구)

  • 권영호;이상수;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.283-289
    • /
    • 1996
  • In this paper, the mix design of the super flowing concrete is described with respcet to basic concept, confined water ratio($\beta_p$), volume ratio of water-binder(w/b), volume ratio of fine aggregates($S_r$) and coarse aggregates($G_v$). The primary purposes of this study are to evaluate the effects of cementitious materials(fly ash, slag cement, portland cement), mixing factors ($\beta_p$, w/b, $S_r$, $G_v$)., and to propose the mix design method of the super flowing concrete. As results of this study, confined water ratio($\beta_p$) of cementitious materials is very high (0.99~1.1), and then the ranges of the optimum mixing factors to be satisfied with the super flowing concrete are $S_r$ 47$\ell$ 2%, $G_v$ 52$\ell$ 1%.

  • PDF

The Analysis of Internal & External Stabilities and Factors for D.C.M Design (DCM 설계에서 주요 인자의 결정과 내.외적 안정해석)

  • Lee, Choong-Ho;Jung, Seung-Yong;Han, Sang-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.793-808
    • /
    • 2009
  • This paper presents procedure and prediction method of internal and external stabilities when designing D.C.M, with main factors to be considered, such as chemical reaction of additive, physical properties of stabilized body and mixing strength. Results show that through case studies, a design unconfined compressive strength of stabilized body (hereafter referred to as 'compressive strength') directly depends on the quantity of cement, which is decided by laboratory test, and the compressive strength enormously affects internal and external stabilities. So laboratory mixing test to obtain the compressive strength for design allowable stress should be given careful considerations.

  • PDF

A Study on the Mix Design and the Control System of Thermal Crack for High Quality Mass Concrete (고품질 매스콘크리트 시공을 위한 배합설계 및 온도균열제어 시스템에 관한 연구)

  • Kim, Sun-Gu;Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.1 no.2
    • /
    • pp.174-178
    • /
    • 2001
  • This study was performed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a result, the optimal mixing conditions were : W/B 41%, unit binder 375kgf/$\textrm{m}^3$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$\textrm{cm}^2$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

A Study on the Mix Design and the Control of Thermal Crack of Mass Concrete (매스콘크리트의 배합설계 및 온도균열제어에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Park, Sang-Joon;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.533-538
    • /
    • 2001
  • This study was peformed to control the thermal crack of the mat footing slab in the multi-purposed buildings. In this study, we executed the mixing design of concrete to satisfy the workability and the quality according to the site conditions. And, we evaluated quantitatively about the possibility of thermal crack by using hydration heat analysis system. Finally, we proposed the optimal mixing conditions, curing methods and curing period which all factors are considered. As a results, the optimal mixing conditions were : W/B 41%, unit binder 375kg/$cm^{2}$, FA replacement ratio 20%. Lowest thermal stress was 22.0kgf/$cm^{2}$ and at that time thermal crack index was over 1.5, when the coefficient of thermal conductivity was lowest among the curing conditions. And, the total curing time was estimated at 6.7 days according to curing steps.

  • PDF

A study on ignition delays of sprays using a shock tube (충격파관을 이용한 분무연료의 착화지연에 관한 연구)

  • 정진도;류정인;수곡행부
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.48-56
    • /
    • 1989
  • A shock tube technique was developed in which a freely falling droplets column produced by an ultrasonic atomizer was ignited behind reflected shock. In the present study, the effects of turbulent mixing on the ignition delay of a cetane was decided, also, ignition process was investigated. For the purpose of disturbance of droplets column and mixing, authors installed turbulent lattice in shock tube. Usually, the ignition delay is so called Arrhenius plot which found break point in the Arrhenius plot on the high temperature side. The rate of misfiring increased rapidly below 1080K, but ignition took place from 838k and luminous flame was seen to spread over the whole section by turbulent lattice. Length, from end plate to turbulent lattice, was varied with 60,40,20mm. Also, ignition process was detected by Photo transistor. As a result, it was found that physical factors changed ignition delay greatly and turbulent mixing had a considerable effects in the ignition process.

  • PDF