• Title/Summary/Keyword: mixing efficiency

Search Result 912, Processing Time 0.029 seconds

Comparison of Froth-flotation Efficiency between Fatty Acid and Non-ionic Surfactant Added to Recovered Paper with Increased Mixing Ratio of OMG (순환제지자원의 OMG비율 증가에 따른 지방산과 비이온성 계면활성제의 탈묵효율 비교)

  • Seo, Jin Ho;Lee, Kwang Seob;Lee, Tai Ju;Lee, Myoung Ku;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.88-95
    • /
    • 2015
  • The main sources of recovered paper for newsprint are old newsprint (ONP) and old magazine (OMG). Recently, a lot of advertisement flyers are flowing into bales of ONP and portion of OMG is increasing in recovered paper because the consumption level of coated paper increases. In this study, nonionic surfactant and fatty acid were used as the de-inking agent for froth-flotation process of mixed recovered paper to investigate the effect of increased mixing ratio of OMG. De-inking efficiency of nonionic surfactant decreased as the mixing ratio of OMG increased; ink removal efficiency of froth-flotation is poor, however, the reject ratio increases due to ash from OMG. In comparison with nonionic surfactant, the ash from OMG had a little effect on reject ratio and optical properties of fatty acid applied flotation accept. If nonionic surfactant and fatty acid are added to pulper and flotation cell sequentially, excessive ash from OMG may not give an adverse effect on de-inking efficiency of mixed recovered paper.

Experimental Study on Mixing Efficiency of Exhaust Gas and Reductant According to SCR Mixer Shape (SCR 믹서형상에 따른 배기가스와 환원제 혼합 효율에 관한 실험적 연구)

  • Choe, Munseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.74-79
    • /
    • 2021
  • This study examined the mixing efficiency of exhaust gas and urea according to the mixer shape in the SCR system. For the experiment, an SCR simulation system was manufactured, and a uniformity detector was attached to the catalyst location to measure the uniformity. The experiment was conducted by setting the exhaust-gas flow rate, temperature, mixer type, and catalyst distance as variables. The experimental results confirmed the swirl angle analysis, urea number distribution, and uniformity. The swirl angle experiment of Models A and B confirmed that the swirl angle of Model A was formed approximately 7 to 8 degrees higher over the entire RPM range. When there was no mixer in the SCR system, the urea and water were concentrated to one side. Mixer Model A showed an even distribution overall, and Model B showed a slightly concentrated tendency at the beginning but then showed a stable distribution of urea. The mixing efficiency of 90%, which was the uniformity target, could be satisfied in Model A and Model B. In particular, Model A showed excellent results that satisfied 90% efficiency at 10 cm of the catalyst position.

Study on Wastewater of Paper Mill for Coagulant Characteristics (제지폐수의 응집특성에 관한 연구)

  • Cho, Jun-Hyung;Jeong, Won-Gu;Kim, Joon-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.14 no.1
    • /
    • pp.101-111
    • /
    • 1998
  • Sedimentation characteristics SS, $BOD_5$ and removal efficiency of waste water in the tissue paper mill using milk carton were examined. Optimum dosage of coagulant, rapid mixing time and slow mixing time were determined by turbidity, SS and S-$BOD_5$ and then equation for treatment efficiency was suggested. For the coagulant, polyaluminium chloride(PAC) are compared with a little better efficiency compare to the aluminium sulfate.

  • PDF

Effect of Heat Flux on the Melting Efficiency and Penetration Shape in TIG Welding (TIG 용접에서 열유속이 용융효율과 용입형상에 미치는 영향)

  • Oh, Dong-Soo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.44-50
    • /
    • 2009
  • The characteristics of arc pressure, current density and heat flux distribution are important factors in understanding physical arc phenomena, which will have a marked effect on the penetration, size and shape of a weld in TIG welding. The purpose of this study is to find out the effect of the heat flux on the melting efficiency and penetration shape in TIG welding using the results of the previous investigators. The conclusions obtained permit to draw a proper method which derived the heat flux distributions by arc pressure distribution measurements, but previous researchers calculated heat flux and current distribution with the heat intensity measurements by the calorimetry. Heat flux of Ar gas arc was concentrated at the central part and distributed low from the arc axis to the radial direction, that of He mixing arc was lower than that of Ar gas, and it was wide distributed to radial direction. That showed a similar characteristic with the Nestor's by calorimetry calculated values. Throughout heat flux drawn in this study was discussed melting efficiency and penetration shape on Ar gas and He mixing gas arc.

A Study on the Phosphorus Resources Recovery using the MAP + PACI (Ca과 응집제를 보완한 MAP법을 이용한 폐수로부터의 인 자원 회수에 관한 연구)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • Modern society has moved from a phosphorus recycling loop, where animal manure and human wastes were spread on farming land to recycle nutrients, to a once-through system, where phosphates are extracted from mined, non-renewable phosphate rock and end up either in landfill(sewage sludge, incinerator ash) or in surface waters. In this research, crystallization of nitrogen and phosphate with natural sources of $Mg^{2+}$ in synthetic water was tested. The operational parameters of pH, mixing time, and the magnesium molar ratio were investigated to find optimal conditions of the MAP precipitation using synthetic wastewater. The removal efficiency of phosphate increased with pH up to 11. By MAP precipitaiton of the synthetic waste water, 94% of the phosphate were eliminated at pH 11. It was found that at least 10 minutes mixing time was required and 20 minutes mixing time was recommended for efficient phosphate removal. High efficiency removal of phosphate was possible when the magnesium molar ratio was 1.0~2.0. The comparative study of different magnesium sources showed that coagulants (PAC) was the more efficient sources than only magnesium. The result showed that 97% of phosphate removal. In conclusion, coagulants (PAC) induced crystallization of struvite and hydroxyapatite was shown to be a technically viable process that could prove cost effective for removing phosphate in wastewater.

Parameter Optimization of a Micro-Static Mixer Using Successive Response Surface Method (순차적 반응표면법을 이용한 마이크로 정적 믹서의 최적설계)

  • Han, Seog-Young;Maeng, Joo-Sung;Kim, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1314-1319
    • /
    • 2004
  • In this study, parameter optimization of micro-static mixer with a cantilever beam was accomplished for maximizing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

Numerical analysis of NOx reduction for compact design in marine urea-SCR system

  • Choi, Cheolyong;Sung, Yonmo;Choi, Gyung Min;Kim, Duck Jool
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.1020-1033
    • /
    • 2015
  • In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. $NH_3$ conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of $NO_x$ reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of $NO_x$ reduction efficiency.

Application of In-Situ Mixing Hydration Accelerator on Polymer Modified Concrete for Bonded Concrete Overlay (접착식 콘크리트 덧씌우기를 위한 초속경화 첨가재 현장 혼합 폴리머 개질 콘크리트의 적용성 연구)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.85-95
    • /
    • 2015
  • PURPOSES : Recently, bonded concrete overlay has been used as an alternative solution in concrete pavement rehabilitation since its material properties are similar to those of the existing concrete pavements. Deteriorated concrete pavements need rapid rehabilitation in order to prevent traffic jams on Korean expressways. Moreover, speedy and effective repair methods are required. Therefore, the use of bonded concrete overlay with ultra-rapid hardening cement has increased in an effort to reopen promptly the expressways in Korea. However, mobile mixer is required for ultra-rapid hardening cement concrete mixing in the construction site. The use of mobile mixer causes various disadvantages aforementioned such as limitation of the construction supply, open-air storage of mixing materials, increase in construction cost, and etc. In this study, therefore, hydration accelerator in-situ mixing on polymer modified concrete produced in concrete plant is attempted in order to avoid the disadvantages of existing bonded concrete overlay method using ultra-rapid hardening cement. METHODS : Bonded concrete overlay materials using ultra-rapid hardening cement should be meet all the requirements including structural characteristics, compatibility, durability for field application. Therefore, This study aimed to evaluate the application of hydration accelerator in-situ mixing on polymer modified concrete by evaluating structural characteristics, compatibility, durability and economic efficiency for bonded concrete overlay. RESULTS : Test results of structural characteristics showed that the compressive, flexural strength and bond strength were exceed 21MPa, 3.15MPa and 1.4MPa, respectively, which are the target strengths of four hours age for the purpose of prompt traffic reopening. In addition, tests of compatibility, such as drying shrinkage, coefficient of thermal expansion and modulus of elasticity, and durability (chloride ions penetration resistance, freezing-thawing resistance, scaling resistance, abrasion resistance and crack resistance), showed that the hydration accelerator in-situ mixing on polymer modified concrete were satisfied the required criteria. CONCLUSIONS : It was known that the hydration accelerator in-situ mixing on polymer modified concrete overlay method was applicable for bonded concrete overlay and was a good alternative method to substitute the existing bonded concrete overlay method since structural characteristics, compatibility, durability were satisfied the criteria and its economic efficiency was excellent compare to the existing bonded concrete overlay methods.

Numerical Investigations of Turbulent Piloted Non-Premixed Flames (난류 Pilot 비예혼합 화염장의 상세구조 해석)

  • Lee, Jeonwon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.185-186
    • /
    • 2014
  • The multi-environment probability density function model has been applied to simulate the turbulent stratified premixed flames. The direct quadrature method of moments (DQMOM) has been adopted to solve the transport PDF equation due to its computational efficiency and robustness. The IEM mixing model is employed to represent the mixing process and the chemical mechanism is based on Gri 3.0 mechanism. Numerical results obtained in this study are precisely compared with experimental data in terms of unconditional and conditional means for scalar fields and velocity fields.

  • PDF

Fabrication of caterpillar mixer and its surface characterization (캐터필러형 믹서의 제작 및 표면 특성 연구)

  • Han Chang-Soo;Park June-Ki;Yoon Yeo-Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.541-542
    • /
    • 2006
  • A micro-size caterpillar mixer has been recently used fur desktop chemical factory and so attractive due to small investment fund for arranging the factory and high efficiency by mixing in sub micro-level region. We report the fabrication of caterpillar mixer and its surface treatment for enhancement of mixing performance. We used the

  • PDF