• Title/Summary/Keyword: mixing chamber

Search Result 329, Processing Time 0.026 seconds

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Aggregate Ratio of Concrete (잔골재율 변화에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park, Do-kyong;Yoon, Yer-Wan;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2004
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidity. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. Strain Rate of Drying Shrinkage of concrete under the condition of dry air appears to rise by about 20%-30% in proportion as the temperature rises $5^{\circ}C$ when the humidity was held below 10% compared under the condition of dry temperature & Humidity test chamber. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. A general formula with two variables is derived as follow ${\varepsilon}={\alpha}_1+{\beta}_1x_1+{\beta}_2x_2+{\beta}_3x_1^2+{\beta}_5x_2^2$. and also graphed in 3 dimensions, enabling to apply to actual design and predict Strain Rate of Drying Shrinkage in concrete. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as follows. The coefficient of correlation of Drying Shrinkage in Concrete was over 90%.

An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber (고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

A Study on the Injection Characteristics of Fuel Supply System of Diesel Engine (디젤엔진 연료계통의 분사특성에 관한 연구)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.49-62
    • /
    • 1993
  • It has been a principle research topic on the diesel engine development to increase the efficiency and the performance of engine to satisfy the user's needs for high reliability and durability. However, recently with the worldwide concerns at the global climate change and environmental protection, the main target in the diesel engine research has been changed to solve the exhaust emission problem in order to satisfy the strict emission regulations. To reduce the pollutant for the diesel engine, the researchs on the combustion chamber is the most important and has to be performed first of all. The diesel fuel injection system plays major role to air-fuel mixing process and influences engine output, themal efficiency, reliability, noise, and emissions. The experimental studies were conducted by varying the various parametric conditions and the results were campared with the computation and calculated results by using the fuel injection simulation program developed during previous research. From the experiments, the matching technique of a fuel injection pump and nozzle was conducted to understand under the various parametric conditions. Also, the relations between needle lift and wave propagation characteristics in high pressure pipe were examined. The basic design data from the experimentations and computation works would be applied to actual design works of diesel fuel injection system.

  • PDF

A Study on the Effects of the Swirl Flow on the Distribution of Soot in the D.I. Diesel Engine (스월 유동이 직분식 디젤엔진 내의 Soot 분포에 미치는 영향에 관한 연구)

  • Lee, Gi-Hyeong;Jeong, Jae-U;Lee, Chang-Sik;Park, Hyeon-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.458-464
    • /
    • 2002
  • Recently, many researches have been performed to improve performances of the combustion and emission in the D.I.Diesel engine. Especially reduction of the soot formation in tole combustion chamber is the essential to acquire the improvement of the emission performance. These emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Thus, in this study, the distribution of soot in the diesel combustion is measured by LII(laser induced incandescence) and LIS(Laser induced scattering) method. From this experimental results, it is confirmed that the swirl flow intensified by SCV(swirl control valve) is effective on the reduction of soot in the combustion chamber.

The Study on Thin Film Fabrication using UHV-LCVD System (I) (UHV-LCVD 장치를 이용한 박막제작에 관한 연구 (I) - 장치 제작을 중심으로 -)

  • Choi, Won-Kook;Yun, Dug-Ju;Gong, Byung-In;Kim, Chang-Hyun;Whang, Chung-Nam;Jeong, Kwang-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.255-260
    • /
    • 1993
  • UHV-LCVD system was constructed for high quality silicon nitride thin film fabrication. This system consisted of a reaction chamber, an introduction chamber with sample load lock entry, a carbinet for gas manipulation controlling gas flow, a $CO_2$ laser and a Fourier transform mass spectrometer. Although the UHV-LCVD system construction was more sophisticated than low pressure CVD, highly pure thin films were fabricated by controlling gas mixing ratio and flow rate in ultra high vacuum surroundings.

  • PDF

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.125-130
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principle design parameters, a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

  • PDF

A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber (정적연소실내의 디젤분무증발과 연소특성에 관한 연구)

  • Kim, S.H.;Kim, S.J.;Lee, M.B.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

CFD Study of the Vacuum-Pump Type Subsonic/Sonic Ejector Flows (진공 펌프형 아음속/음속 이젝터 유동에 관한 수치 해석적 연구)

  • 김희동;권오식;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.26-35
    • /
    • 2000
  • This paper depicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equations in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for the subsonic/sonic ejector systems which are applicable to industrial vacuum pumps, the ejector throat area, the mixing section configuration, and the ejector throat length are changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratios, the effects of the design factors on the vacuum performance of the secondary chamber are discussed.

  • PDF

Numerical research for Gate Type Waste Incinerators In Environment energy facilities (환경에너지시설내 화격자식 소각로 수치해석 연구)

  • Kim, Jong-Yoon;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.149-155
    • /
    • 2017
  • This study is analyzed combustion phenomena based on the environmental energy facility incinerator. It is assumed that combustible components of waste are composed of carbon and hydrogen, and the combustion process of fuel is by setting as multi-component / multistage reaction. As the combustion chamber is burned, the high temperature environment is achieved, also the heat transfer accompanied by the turbulent flow and the generation of NOx, a pollutant, are interpreted to predict the thermal and fluid characteristics and pollution emissions of the grate incinerator. As the result of internal flow analysis, the slow flow around the ash chute and the mixing effect due to the complicated turbulence around the combustion chamber were predicted to show excellent performance. It is shown to the internal average temperature was about $1024^{\circ}C$, around the about $1000^{\circ}C$ homogeneous temperature distribution. Due to the sudden temperature decrease in the boiler, the flue gas temperature at the outlet was estimated to be about $220^{\circ}C$.