• Title/Summary/Keyword: mixer design

Search Result 296, Processing Time 0.022 seconds

Development of Blade on 9㎥ Class of Mixer Drum (9㎥급 믹서드럼 블레이드의 개발)

  • Shin, H.G.;Choi, H.C.;Bean, D.H.;Kim, Y.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.65-71
    • /
    • 2011
  • The concrete mixer truck which is in charge of raw materials in civil engineering construction of the concrete loading, transport, placement, is used $6m^3$, $7m^3$ class in domestic(Korea). But in the case of the international construction fields are utilized $9m^3$ or above class because of the large-scale engineering and construction circumstances. In this paper, to develop a large $9m^3$ class mixer drum and the mixer drum in order to complement the technical and discharge that is responsible for stirring the blades by applying optimal design through implementation of the optimal shape of the concrete in the drum maintenance and placement of high-quality effects on increasing discharge such as advanced conventional drum mixer is to secure and differentiated technology. Large, heavy weight in development and uphold the drum mixer vehicle sub-frame is required to settle the design of the existing class mixer drum frames per $6m^3$ changed to account for changes in slope and length using CATIA V5 3D modeling work was performed.

Design and Fabrication of 40 ㎓ MMIC Double Balanced Star Mixer using Novel Balun (새로운 발룬 회로를 이용한 40 ㎓ 대역 MMIC 이중 평형 Star 혼합기의 설계 및 제작)

  • 김선숙;이종환;염경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.258-264
    • /
    • 2004
  • In this paper, MMIC double balanced star mixer for 40 ㎓ was implemented on GaAs substrate with backside vias. In the design of the MMIC mixer, the design of balun and diode was required. A novel balun structure using microstrip to CPS was presented. The 40 ㎓ balun was designed based on the design experience of the scale-down balun by 2 ㎓. The balun may be suitable for fabrication in MMIC process with backside via and can easily be applied for DBM(Double Balanced Mixer). A Schottky diode was designed and implemented using p-HEMT process considering the compatability with other high frequency MMIC's fabricated on p-HEMT base process. Finally, the double balanced star mixer was fabricated using the balun and the p=HEMP Schottky diode. The measured performance of mixer shows 30 ㏈ conversion loss at 18 ㏈m LO power. This insufficient performance is caused by the unwanted diode at AlGaAs junction in vertical structure of p-HEMT. If the p-HEMT's gate is recessed to AlGaAs layer, and so the diode is eliminated, the mixer's performances will be improved.

Design of Double Bond Down Converting Mixer Using Embeded Balun Type (발룬 내장형 이중대역 하향 변환 믹서 설계 및 제작)

  • Lee, Byung-Sun;Roh, Hee-Jung;Seo, Choon-Weon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.141-147
    • /
    • 2008
  • This paper describes the design of frequency down converting Mixer in the receiver to use compound semiconductor and CMOS product process. The basic theory and structure of frequency down converting Mixer is surveyed, and we design mixer circuit with active balun which use the compound semiconductor and CMOS process. This mixer convert a single ended signal to differential signal at input port of RF and LO instead of matching circuit to get dual band balanced mixer structure and characteristic broadband. This designed mixer has a conversion gain $-1{\sim}-6[dB]$ at $2{\sim}6[GHz]$ bandwidths. However, the simulation of the designed mixer with active balun has the result of a 7[dB] conversion gain for -2[dBm] LO input power and -10[dBm] input P1[dB] at 5.8[GHz].

The Design of a Sub-Harmonic Dual-Gate FET Mixer

  • Kim, Jeongpyo;Lee, Hyok;Park, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, a sub-harmonic dual-gate FET mixer is suggested to improve the isolation characteristic between LO and RF ports of an unbalanced mixer. The mixer was designed by using single-gate FET cascode structure and driven by the second harmonic component of LO signal. A dual-gate FET mixer has good isolation characteristic since RF and LO signals are injected into gatel and gate2, respectively. In addition, the isolation characteristic of a sub-harmonic mixer is better than that of a fundamental mixer due to the large frequency separation between the LO and RF frequencies. As RF power was -30 ㏈m and LO power was 0 ㏈m, the designed mixer yielded the -47.17 ㏈m LO-to-RF leakage power level, 10 ㏈ conversion gain, -2.5 ㏈m OIP3, -12.5 ㏈m IIP3 and -1 ㏈m 1 ㏈ gain compression point. Since the LO-to-RF leakage power level of the designed mixer is as good as that of a double-balanced mixer, the sub-harmonic dual-gate FET mixer can be utilized instead.

Shape Optimization of an Active Micro-Mixer for Improving Mixing Efficiency (혼합 효율 향상을 위한 마이크로 동적 믹서의 형상최적화)

  • Park, Jae-Yong;Kim, Sang-Rak;Lee, Won-Gu;Yoo, Jin-Sik;Kim, Young-Dae;Maeng, Joo-Seung;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.146-152
    • /
    • 2007
  • An active micro-mixer, which was composed of an oscillating micro-stirrer in the microchannel to provide rapid, effective mixing at high flow, rates was analyzed. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight microchannel and microchannel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an optimum design for a dynamic micro-mixer with an oscillating stirrer was performed using Taguchi method in order to obtain a robust solution. The design parameters were established as the frequency, the length and the angle of the stirrer and the optimal values were determined to be 2, 0.8D and ${\pm}75^{\circ}$, respectively. It was found that the mixing index of the optimal design increased 80.72% compared with that of the original design.

System Level Design of Multi-standard Receiver Using Reconfigurable RF Block

  • Kim, Chang-Jae;Jang, Young-Kyun;Yoo, Hyung-Joun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.174-181
    • /
    • 2004
  • In this paper, we review the four receiver architectures and four methods for multi-standard receiver design. Propose reconfigurable RF block can be used for both low-IF and direct conversion architecture. Also, using reconfigurable mixer method, it can be operated at $2{\sim}6$ GHz range for multi-standard receiver. It consists of wideband mixer, filter, and automatic gain control amplifier and to get wide-band operation, $2{\sim}6$ GHz, wide-band mixer use flexible input matching method. Besides, to design multi-standard receiver, LNA bank that support each standard is necessary and it has good performance to compensate the performance of wide-band mixer. Finally, we design and simulate proposed reconfigurable RF block and to prove that it has acceptable performances for various wireless standards, the LNA bank that supports both IEEE 802.11a/b/g and WCDMA is also designed and simulated with it.

Research on Fourth Harmonic Mixer at W Band in the Imaging System

  • Xiang, Bo;Dou, Wenbin;He, Minmin;Wang, Zongxin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.316-321
    • /
    • 2010
  • This paper presents a novel fourth harmonic mixer with new structure. The traditional 3-ports fourth harmonic mixer and the novel fourth harmonic mixer are designed by ADS, HFSS and CST simulator. The mixers have been fabricated and tested. The size of the traditional 3-ports fourth harmonic mixer is $12{\times}15$ mm, and the best conversion loss is 18.7 dB according to the measurement. Since the traditional 3-port mixer size is too large to be ranked, we design a novel fourth harmonic mixer for imaging system. The width of the mixing module in the novel fourth harmonic mixer is only 3.65 mm, and this size is fully capable to meet the mixer unit space which is not greater than 5 mm. The simulation result shows that the mixer has good performance, and the experiment result shows that the best conversion loss of the novel fourth harmonic mixer is 16.3 dB at RF signal of 91.3 GHz.

Design and Analysis of Multi Beam Space Optical Mixer

  • Lian Guan;Zheng Yang
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.56-64
    • /
    • 2024
  • In response to the current situation where general methods cannot effectively compensate for the phase delay of ordinary optical mixers, a multi-layer spatial beam-splitting optical mixer is designed using total reflection triangular prisms and polarization beam splittings. The phase delay is generated by the wave plate, and the mixer can use the existing parallel plates in the structure to individually compensate for the phase of the four output beams. A mixer model is established based on the structure, and the influence of the position and orientation of the optical components on the phase delay is analyzed. The feasibility of the phase compensation method is simulated and analyzed. The results show that the mixer can effectively compensate for the four outputs of the optical mixer over a wide range. The mixer has a compact structure, good performance, and significant advantages in phase error control, production, and tuning, making it suitable for free-space coherent optical communication systems.

Design of A Compact Single-Balanced Mixer for UWB Applications

  • Mohyuddin, Wahab;Kim, In Bok;Choi, Hyun Chul;Kim, Kang Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.65-70
    • /
    • 2017
  • The design and implementation aspects of a new single-balanced mixer for ultra-wideband (UWB) applications are presented in this study. The proposed mixer utilizes a miniaturized UWB ring coupler as a balun, consisting of a pair of in-phase and inverted-phase transitional structures. The well-balanced UWB performance of the ring coupler, aside from the optimized diode matching, results in improved conversion loss and inter-port isolations for a wide bandwidth. The size of the implemented single-balanced diode mixer is reduced to about 60% of the area of the conventional single-balanced ring diode mixer. The measured results of the proposed mixer exhibit an average conversion loss of 7.5 dB (minimum 6.7 dB) and a port-to-port isolation of greater than 18 dB over a UWB frequency range of 3.1-10.6 GHz. The measured results agree well with the simulated results.