• Title/Summary/Keyword: mixed-model assembly lines

Search Result 34, Processing Time 0.023 seconds

Heuristics Method for Sequencing Mixed Model Assembly Lines with Hybridworkstation (혼합작업장을 고려한 혼합모델 조립라인의 투입순서결정에 관한 탐색적기법)

  • 김정자;김상천;공명달
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.48
    • /
    • pp.299-310
    • /
    • 1998
  • Actually mixed assembly line is mixed with open and close type workstation. This workstation is called hybridworkstation. The propose of this paper is to determine the sequencing of model that minimize line length for actual(hybridworkstation) mixed model assembly line. we developed three mathematical formulation of the problem to minimize the overall length of a line with hybrid station. Mathematical formulation classified model by operato schedule. Mixed model assembly line is combination program and NP-hard program. Thus computation time is often a critical factor in choosing a method of determining the sequence. This study suggests a tabu search technique which can provide a near optimal solution in real time and use the hill climbing heuristic method for selecting initial solution. Modified tabu search method is compared with MIP(Mixed Integer Program). Numerical results are reported to demonstrate the efficiency of the method.

  • PDF

Sequencing in Mixed Model Assembly Lines with Setup Time : A Tabu Search Approach (준비시간이 있는 혼합모델 조립라인의 제품투입순서 결정 : Tabu Search 기법 적용)

  • 김여근;현철주
    • Korean Management Science Review
    • /
    • v.13 no.1
    • /
    • pp.13-27
    • /
    • 1996
  • This paper considers the sequencing problem in mixed model assembly lines with hybrid workstation types and sequence-dependent setup times. Computation time is often a critical factor in choosing a method of determining the sequence. We develop a mathematical formulation of the problem to minimize the overall length of a line, and present a tabu search technique which can provide a near optimal solution in real time. The proposed technique is compared with a genetic algorithm and a branch-and-bound method. Experimental results are reported to demonstrate the efficiency of the technique.

  • PDF

Scheduling for Mixed-Model Assembly Lines in JIT Production Systems (JIT 생산 시스템에서의 혼합모델 조립라인을 위한 일정계획)

  • Ro, In-Kyu;Kim, Joon-Seok
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.83-94
    • /
    • 1991
  • This study is concerned with the scheduling problem for mixed-model assembly lines in Just-In-Time(JIT) production systems. The most important goal of the scheduling for the mixed-model assembly line in JIT production systems is to keep a constant rate of usage for every part used by the systems. In this study, we develop two heuristic algorithms able to keep a constant rate of usage for every part used by the systems in the single-level and the multi-level. In the single-level, the new algorithm generates sequence schedule by backward tracking and prevents the destruction of sequence schedule which is the weakest point of Miltenburg's algorithms. The new algorithm gives better results in total variations than the Miltenburg's algorithms. In the multi-level, the new algorithm extends the concept of the single-level algorithm and shows more efficient results in total variations than Miltenburg and Sinnamon's algorithms.

  • PDF

Sequencing Problem to Keep a Constant Rate of Part Usage In Mixed Model Assembly Lines : A Genetic Algorithm Approach (혼합모델 조립라인에서 부품사용의 일정률 유지를 위한 생산순서 결정 : 유전알고리즘 적용)

  • Hyun, Chul-Ju
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.129-136
    • /
    • 2007
  • This paper considers the sequencing of products in mixed model assembly lines under Just-In-Time (JIT) systems. Under JIT systems, the most important goal for the sequencing problem is to keep a constant rate of usage every part used by the systems. The sequencing problem is solved using Genetic Algorithm Genetic Algorithm is a heuristic method which can provide a near optimal solution in real time. The performance of proposed technique is compared with existing heuristic methods in terms of solution quality. Various examples are presented and experimental results are reported to demonstrate the efficiency of the technique.

A Sequencing Problem in Mixed-Model Assembly Line Including a Painting Line

  • Yoo, J.K.;Moriyama, T.;Shimizu, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1118-1122
    • /
    • 2005
  • In order to keep production balance at a mixed-model assembly line and a painting line, large WIP(Work- In-Process) inventories are required between two lines. To increase the efficiency of line handling through reducing the inventories under this circumstance, this paper concerns with a sequencing problem for a mixed-model assembly line that includes a painting line where the uncertain elements regarding the defective products exist. Then, we formulate a new type of the sequencing problem minimizing the line stoppage time and the idle time with forecasting the supply time of the products from the painting line. Finally, we examine the effectiveness of the proposed sequencing through computer simulations.

  • PDF

Sequencing for a mixed model assembly line in just-in-time production system (JIT 상황하에서 다품종 조립라인 작업물 투입 순서 결정 방안)

  • Hwang, Hark;Jeong, In-Jae;Lim, Joon-Mook
    • Korean Management Science Review
    • /
    • v.11 no.1
    • /
    • pp.91-106
    • /
    • 1994
  • In mixed model assembly lines, products are assembled seqeuntially that have different combination of options specified by customers. In just in time (JIT) environment, production smoothing becomes an important issue for sub-lines which supply the necessary parts to each workstation of the assembly line. Another important issue is to avoid line stopping caused by work overload in workstations. To find a sequence which minimizes the costs associated with line stoppage and the option parts inventory level, a nonlinear mixed integer programming is formulated. Recognizing the limit of the Branch and Bound technique in large sized problems, a heuristic solution procedure is proposed. The performance of the heuristic is compared with the Branch and Bound technique through randomly generated test problems. The computational results indicate that on the average the heuristic solutions deviate approximately 3.6% from the optimal solutions.

  • PDF

A batch scheduling scheme for the workcenters that supply parts to mixed-model assembly lines (혼류 조립 라인에 batch 단위로 부품을 공급하는 단위 작업장의 생산계획 수립)

  • 백종관;백준걸;김성식
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.369-372
    • /
    • 1996
  • The factory under this study consists of mixed-model assembly lines and workcenters which provide parts to the main lines. Parts produced by the workcenter have different specifications for different product models. The workcenters fabricate parts in batches, and they are divided into two types. A type 1 center supplies parts only to the main line that is designated to the center while type 2 center provides parts to all the main lines. The purpose of this study is to develop a scheduling scheme for the workcenter, and the main objective of the schedules is to provide parts for the main lines without delay. The facts that make the scheduling challengeable are that 1) the different models existing together on a main line request different parts, 2) the spaces for part inventories are limited and 3) set up times are sequence dependent and long in some cases. This study presents developed scheduling schemes for the type 1 center and explains the scheduling and control structure used.

  • PDF

An operation scheme for the mixed model assembly lines scheduling (혼류 조립 생산 라인 계획 운영 구조)

  • Shin, Hyeon-Jun;Chun, Jin;Kim, Seong-Sik
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.365-368
    • /
    • 1996
  • The setting of the factory under this study is as the following. There are multiple assembly lines. Each line can handle any of given set of products. Furthermore each line is capable of assembling several products concurrently, i.e. mixed model assembly line. An incoming production order is characterized by its due-date, product type and quantity. Under this setting we first have to select the starting time and the place(assembly line) for an order to be processed. We also have to devise a way to control orders to be manufactured as scheduled. Finally there should be a mean to reschedule orders when something unexpected happens. This paper offers a scheme that provides the above mentioned necessities. It also provides a case where the scheme is applied.

  • PDF

Balancing and Sequencing of Mixed Model Assembly Lines Using A Genetic Algorithm (유전알고리듬을 이용한 혼합모델 조립라인의 작업할당과 투입 순서 결정)

  • 김동묵;김용주;이남석
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.05a
    • /
    • pp.523-534
    • /
    • 2005
  • This paper is concerned with the integrated problem of line balancing and model sequencing in mixed model assembly lines(MMALBS), which is important to efficient utilization of the lines. In the problem, we deal with the objective of minimizing the overall line length To apply the GAs to MMALBS problems, we suggest a GA representation which suitable for its problems, an efficient decoding technique for the objective, and genetic operators which produce feasible offsprings. Extensive experiments are carried out to analyze the performance of the proposed algorithm. The computational results show that our algorithm is promising in solution quality.

  • PDF

An Efficient Algorithm for Balancing and Sequencing of Mixed Model Assembly Lines (혼합모델 조립라인의 작업할당과 투입순서 결정을 위한 효율적인 기법)

  • Kim Dong Mook;Kim Yong Ju;Lee keon Shang;Lee Nam Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.3
    • /
    • pp.85-96
    • /
    • 2005
  • This paper is concerned with the integrated problem of line balancing and model sequencing in mixed model assembly lines(MMALBS), which is important to efficient utilization of the lines. In the problem, we deal with the objective of minimizing the overall line length To apply the GAs to MMALBS problems, we suggest a GA representation which suitable for its problems, an efficient decoding technique for the objective, and genetic operators which produce feasible offsprings. Extensive experiments are carried out to analyze the performance of the proposed algorithm. The computational results show that our algorithm is promising in solution quality.