• Title/Summary/Keyword: mixed-mode crack

Search Result 207, Processing Time 0.026 seconds

Fracture Toughness of Leadframe/EMC Interface (리드프레임/EMC 계면의 파괴 인성치)

  • 이호영;유진
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.647-657
    • /
    • 1999
  • Due to the inherently poor adhesion strength of Cu-based leadframe/EMC (Epoxy Molding Compound) interface, popcorn cracking of thin plastic packages frequently occurs during the solder reflow process. In the present work, in order to enhance the adhesion strength of Cu-based leadframe/EMC interface, black-oxide layer was formed on the leadframe surface by chemical oxidation of leadframe, and then oxidized leadframe sheets were molded with EMC and machined to form SDCB (Sandwiched Double-Cantilever Beam) and SBN (Sandwiched Brazil-Nut) specimens. SDCB and SBN specimens were designed to measure the adhesion strength between leadframe and EMC in terms of critical energy-release rate under quasi-Mode I ($G_{IC}$ ) and mixed Mode loading ($G_{C}$ /) conditions, respectively. Results showed that black-oxide treatment of Cu-based leadframe initially introduced pebble-like X$C_2$O crystals with smooth facets on its surface, and after the full growth of $Cu_2$O layer, acicular CuO crystals were formed atop of the $Cu_2$O layer. According to the result of SDCB test, $Cu_2$O crystals on the leadframe surface did not increase ($G_{IC}$), however, acicular CuO crystals on the $Cu_2$O layer enhanced $G_{IC}$ considerably. The main reason for the adhesion improvement seems to be associated with the adhesion of CuO to EMC by mechanical interlocking mechanism. On the other hand, as the Mode II component increased, $G_{C}$ was increased, and when the phase angle was -34$^{\circ}$, crack Kinking into EMC was occured.d.

  • PDF

Progressive fracture analysis of concrete using finite elements with embedded displacement discontinuity

  • Song, Ha-Won;Shim, Byul;Woo, Seung-Min;Koo, Ja-Choon
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.591-604
    • /
    • 2001
  • In this paper, a finite element with embedded displacement discontinuity which eliminates the need for remeshing of elements in the discrete crack approach is applied for the progressive fracture analysis of concrete structures. A finite element formulation is implemented with the extension of the principle of virtual work to a continuum which contains internal displacement discontinuity. By introducing a discontinuous displacement shape function into the finite element formulation, the displacement discontinuity is obtained within an element. By applying either a nonlinear or an idealized linear softening curve representing the fracture process zone (FPZ) of concrete as a constitutive equation to the displacement discontinuity, progressive fracture analysis of concrete structures is performed. In this analysis, localized progressive fracture simultaneous with crack closure in concrete structures under mixed mode loading is simulated by adopting the unloading path in the softening curve. Several examples demonstrate the capability of the analytical technique for the progressive fracture analysis of concrete structures.

Analysis of cracks emanating from a circular hole in an orthotropic infinite plate (直交 異方性 無限平版 內部의 圓孔周圍 龜裂 解析)

  • 정성균;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.895-903
    • /
    • 1987
  • This paper investigates the problem of cracks emanating from a circular hole in an orthotropic infinite plate. The mixed-mode stress intensity factors are obtained by using the modified mapping-collocation method. To investigate the effect of anisotropy and circular hole boundary on crack tip singularity, stress intensity factors are considered as functions of the normalized crack length for various types of laminated composite. The results indicate a strong dependence of the stress intensity factor on the material anisotropy and geometry.

Overload Analysis and Fatigue Life Prediction Using an Effective J-Integral of Spot Welded Specimens (점용접시편의 과부하해석 및 유효 J-적분에 의한 피로수명예측)

  • Lee, Hyeong-Il;Choe, Jin-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.567-580
    • /
    • 2000
  • This paper proposes an integrated approach, which is independent of specimen geometry and loading type, for predicting the fatigue life of spot welded specimens. We first establish finite element models reflecting the actual specimen behaviors observed on the experimental load-deflection curves of 4 types of single spot welded specimens. Using finite element models elaborately established, we then evaluate fracture parameter J-integral to describe the effects of specimen geometry and loading type on the fatigue life in a comprehensive manner. It is confirmed, however, that J-integral concept alone is insufficient to clearly explain the generalized relationship between load and fatigue life of spot welded specimens. On this ground, we introduce another effective parameter $J_e$ composed of $J_I$, $J_{II}$, $J_{III}$, which has been demonstrated here to more sharply define the relationship between load and fatigue life of 4 types of spot welded specimens. The crack surface displacement method is adopted for decomposition of J, and the mechanism of the mixed mode fracture is also discussed in detail as a motivation of using $J_e$.

Constraint of Semi-elliptical Surface Cracks in T and L-joints (T-형 및 L-형 배관내 반타원 표면균열에서의 구속상태)

  • Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1325-1333
    • /
    • 2001
  • Critical defects in pressure vessels and pipes are generally found in the form of a semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. Furthermore, in addition to the traditional single parameter K or J-integral, the second parameter like T-stress should be measured to quantify the constraint effect. In this work, the validity of the line-spring finite element is investigated by comparing line-spring J-T solutions to the reference 3D finite element J-T solutions. A full 3D-mesh generating program for semi-elliptical surface cracks is employed to provide such reference 3D solutions. Then some structural characteristics of the surface-cracked T and L-joints are studied by mixed mode line-spring finite element. Negative T-stresses observed in T and L-joints indicate the necessity of J-T two parameter approach for analyses of surface-cracked T and L-joints.

Fracture Behaviors of Alumina Tubes under Combined Tension/Torsion (알루미나 튜브의 인장/비틀림 조합하중하의 파괴거동)

  • Kim, K.T.;Suh, J.;Cho, Y.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.20-28
    • /
    • 1991
  • Fracture of Al2O3 tubes for different loading path under combined tension/torsion was investigated. Macroscopic directions of crack propagation agreed well with the maximum principal stress criterion, independent of the loading path. However, fracture strength from the proportional loading test($\tau$/$\sigma$= constant) showed either strengthening or weakening compared to that from uniaxial tension, depending on the ratio $\tau$/$\sigma$. The Weibull theory was capable to predict the strengthening of fracture strength in pure torsion, but not the weakening in the proportional loading condition. The strengthening or weakening of fracture strength in the proportional loading condition was explained by the effect of shear stresses in the plane of randomly oriented microdefects. Finally, a new empirical fracture criterion was proposed. This criterion is based on a mixed mode fracture criterion and experimental data for fracture of Al2O3 tubes under combined tension/torsion. The proposed fracture criterion agreed well with experimental data for both macroscopic directions of crack propagation and fracture strengths.

  • PDF

Non-linear analysis of dealamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.97-111
    • /
    • 2017
  • The present paper reports an analytical study of delamination fracture in the Mixed Mode Flexure (MMF) functionally graded beam with considering the material non-linearity. The mechanical behavior of MMF beam is modeled by using a non-linear stress-strain relation. It is assumed that the material is functionally graded along the beam height. Fracture behavior is analyzed by the J-integral approach. Non-linear analytical solution is derived of the J-integral for a delamination located arbitrary along the beam height. The J-integral solution derived is verified by analyzing the strain energy release rate with considering the non-linear material behavior. The effects of material gradient, crack location along the beam height and material non-linearity on the fracture are evaluated. It is found that the J-integral value decreases with increasing the upper crack arm thickness. Concerning the influence of material gradient on the non-linear fracture, the analysis reveals that the J-integral value decreases with increasing the ratio of modulus of elasticity in the lower and upper edge of the beam. It is found also that non-linear material behavior leads to increase of the J-integral value. The present study contributes for the understanding of fracture in functionally graded beams that exhibit material non-linearity.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads

  • M. Hassani;M.M. Monfared;A. Salarvand
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.535-546
    • /
    • 2023
  • In the present paper, multiple interface cracks between a functionally graded orthotropic coating and an orthotropic half-plane substrate under concentrated loading are considered by means of the distribution dislocation technique (DDT). With the use of integration of Fourier transform the problem is reduced to a system of Cauchy-type singular integral equations which are solved numerically to compute the dislocation density on the surfaces of the cracks. The distribution dislocation is a powerful method to calculate accurate solutions to plane crack problems, especially this method is very good to find SIFs for multiple unequal cracks located at the interface. Hence this technique allows considering any number of interface cracks. The primary objective of this paper is to investigate the effects of the interaction of multiple interface cracks, load location, material orthotropy, nonhomogeneity parameters and geometry parameters on the modes I and II SIFs. Numerical results show that modes I/II SIFs decrease with increasing the nonhomogeneity parameter and the highest magnitude of SIF occurs where distances between the load location and crack tips are minimal.

Calculation of Stress Intensity Factor in 2-D Using $J_k$-Integral for a Rectilinear Elastic Anisotropic Body (2차원 선형 탄성 이방성 재료에서 $J_k$-적분을 이용한 응력확대계수 계산)

  • An, Deuk-Man;Choi, Chang-Yeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.134-142
    • /
    • 2001
  • The integrals $J_k$(k=1,2) in the rectilinear anisotropis body in 2-D were determined using Lekhnitskii formalism. The relationship between $J_k$ and stress intensity factors are implified by the important equation between elastic compliance. The numerical evaluation of stress intensity factor for the single edge crack in mixed mode is determined by superposing known exact solutions.

  • PDF