• Title/Summary/Keyword: mixed-mode 3D TCAD

Search Result 3, Processing Time 0.022 seconds

Impacts of Trapezoidal Fin of 20-nm Double-Gate FinFET on the Electrical Characteristics of Circuits

  • Ryu, Myunghwan;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.462-470
    • /
    • 2015
  • In this study, we analyze the impacts of the trapezoidal fin shape of a double-gate FinFET on the electrical characteristics of circuits. The trapezoidal nature of a fin body is generated by varying the angle of the sidewall of the FinFET. A technology computer-aided-design (TCAD) simulation shows that the on-state current increases, and the capacitance becomes larger, as the bottom fin width increases. Several circuit performance metrics for both digital and analog circuits, such as the fan-out 4 (FO4) delay, ring oscillator (RO) frequency, and cut-off frequency, are evaluated with mixed-mode simulations using the 3D TCAD tool. The trapezoidal nature of the FinFET results in different effects on the driving current and gate capacitance. As a result, the propagation delay of an inverter decreases as the angle increases because of the higher on-current, and the FO4 speed and RO frequency increase as the angle increases but decrease for wider angles because of the higher impact on the capacitance rather than the driving strength. Finally, the simulation reveals that the trapezoidal angle range from $10^{\circ}$ to $20^{\circ}$ is a good tradeoff between larger on-current and higher capacitance for an optimum trapezoidal FinFET shape.

Accuracy Evaluation of the FinFET RC Compact Parasitic Models through LNA Design (LNA 설계를 통한 FinFET의 RC 기생 압축 모델 정확도 검증)

  • Jeong, SeungIk;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.25-31
    • /
    • 2016
  • Parasitic capacitance and resistance of FinFET transistors are the important components that determine the frequency performance of the circuit. Therefore, the researchers in our group developed more accurate parasitic capacitance and resistance for FinFETs than BSIM-CMG. To verify the RF performance, proposed model was applied to design an LNA that has $S_{21}$ more than 10dB and center frequency more than 60GHz using HSPICE. To verify the accuracy of the proposed model, mixed-mode capability of 3D TCAD simulator Sentaurus was used. $S_{21}$ of LNA was chosen as a reference to estimate the error. $S_{21}$ of proposed model showed 87.5% accuracy compared to that of Sentaurus in 10GHz~100GHz frequency range. The $S_{21}$ accuracy of BSIM-CMG model was 56.5%, so by using the proposed model, the accuracy of the circuit simulator improved by 31%. This results validates the accuracy of the proposed model in RF domain and show that the accuracies of the parasitic capacitance and resistance are critical in accurately predicting the LNA performance.

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.