• Title/Summary/Keyword: mixed-matrix membranes

Search Result 45, Processing Time 0.023 seconds

Gas Permeation Characteristics of PEBAX Mixed Matrix Membranes Containing Polyethylenimine-modified GO (Polyethylenimine으로 개질된 GO를 함유한 PEBAX 혼합막의 기체투과 특성)

  • Yi, Eun Sun;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.404-416
    • /
    • 2021
  • In this study, a mixed matrix membrane was prepared by varying the contents of GO and PEI-GO synthesized in PEBAX2533, and the permeation characteristics of N2 and CO2 were studied. The N2 and CO2 permeability of the PEBAX/GO mixed membrane decreased as the GO content increased, and showed the highest CO2/N2 selectivity of 58.9 at GO 0.3 wt%. For the PEBAX/PEI-GO mixed membrane, the N2 permeability decreased as the PEI-GO content increased, and the CO2 permeability showed a different trend according to the PEI-GO content. Overall, the CO2/N2 selectivity was higher than that of the PEBAX/GO mixed membrane. In particular, PEI-GO 0.3 wt% showed the highest CO2/N2 selectivity of 73.5 among the mixed membranes, and a positive result was obtained as it was located above the Robeson upper bound. This is believed to be due to the molecular sieving channel effect resulting from the original GO structure, the functional groups present in the structure of GO having affinity for CO2, and the effect of amine bound to PEI by modifying GO into PEI.

Study of enhanced physical and pervaporation properties in composite membrane

  • RajiniKanth, Vanarch;Ravindra, Sakey;Madalageri, Priya M;Kajjari, Praveen B.;Mulaba-Bafubiandi, Antoine F
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.483-498
    • /
    • 2017
  • Novel mixed matrix membranes of Sodium Alginate (NaAlg) were developed by the incorporation ofunmodified, modified Phosphomolybdic acid (PMA) then cross-linked with glutaraldehyde externally. These membranes were prepared by the solution casting technique. Pervaporation (PV) experiments have been performed with pure NaAlg, unmodified NaAlg-PMA5, NaAlg-PMA10, modified NaAlg-mPMA5, and NaAlg-mPMA10 (wt. % of PMA 5 and 10) at 30, 40 and $50^{\circ}C$, to separate water-isopropanol feed mixtures containing 10-30 wt. % of water. Pervaporation results of NaAlg-mPMA10 produced a highest separation factor of 9028 with a flux of $0.269kg/m^2.h$ for 10 wt. % of water containing feed mixture. Both separation factor and flux for water increased significantly with increasing content of mPMA into NaAlg; a significant improvement in PV performance was observed for NaAlg-mPMA5 and NaAlg-mPMA10 membranes when compared to pure NaAlg& PMA-5, PMA-10 membrane.

Effect of graphene oxide on polyvinyl alcohol membrane for textile wastewater treatment

  • Zahoor, Awan;Naqvi, Asad A.;Butt, Faaz A.;Zaidi, Ghazanfar R.;Younus, Muhammad
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.121-128
    • /
    • 2022
  • A tremendous amount of energy resources is being wasted in cleaning wastewater to save the environment across the globe. Several different procedures are commercially available to process wastewater. In this work, membrane filtration technique is used to treat the textile wastewater because of its cost effectiveness and low environmental impacts. Mixed Matrix Membrane (MMM) consist of Polyvinyl Alcohol (PVA) in which Graphene Oxide (GO) was added as a filler material. Five different membranes by varying the quantity of GO were prepared. The prepared membrane has been characterized by Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR) and Water Contact Angle (WCA). The prepared membranes have been utilized to treat textile wastewater. The synthesized membranes are used for the elimination of total dissolve solids (TDS), total suspended solids (TSS), Methylene blue (MB) dye and copper metallic ions from textile wastewater. It is concluded that amount of GO has direct correlation with the quality of wastewater treatment. The maximum removal of TDS, TSS, MB and copper ions are found to be 7.42, 23.73, 50.53 and 64.5% respectively and are achieved by 0.02 wt% PVA-GO membrane.

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes (셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막)

  • Da Hye Sim;Young Park;Young-Woo Choi;Jung Tae Park;Jae Hun Lee
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.154-162
    • /
    • 2024
  • Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.

Gas Permeation Properties of CO2 and CH4 for PEBAX®/Fumed Silica Hybrid Membranes (PEBAX®/fumed silica 하이브리드 분리막을 통한 CO2와 CH4의 기체투과특성)

  • Kim, Hyunjoon
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.74-82
    • /
    • 2022
  • The objective of this work was to investigate the gas permeation properties of CO2 and CH4 for PEBAX®/TS-530 hybrid membranes and compare with pure PEBAX®-1657 membrane. With FTIR and XRD it was possible to confirm that TS-530 was dispersed well in PEBAX® matrix. Compared with pure PEBAX® membrane, ideal separation factor for PEBAX®/TS-530 (10 wt%) hybrid membrane was enhanced a little. As the amount of TS-530 was increased, the gas permeability coefficients of both CO2 and CH4 were increased, while the ideal separation factor was decreased. This results were explained by the reduction of crystallinity of polyamide block and interchain distance caused by introduction of inorganic nanoparticles. And fumed silica might tend to agglomerate, resulting in forming nonselective nanogaps in the hybrid materials, thus the diffusivity would be enhanced at the expense of diffusivity selectivity.

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Preparation of Polysulfone Composite Ultrafiltration Hollow Fiber Membranes Incorporating Nano-size Fumed Silica with Enhanced Antifouling Properties (나노 크기의 Fumed Silica가 함유된 Polysulfone 한외여과 중공사막 제조 및 내오염성 분석)

  • Kang, Yesol;Lim, Joohwan;Kim, In S.
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.379-387
    • /
    • 2018
  • This study was conducted to improve the membrane characteristics and performance by increasing hydrophilicity by adding additives to the ultrafiltration polysulfone (PSf) hollow fiber membrane. The mixed matrix membranes (MMMs) were prepared by dispersing 15 nm of fumed silica (FS) in the spinning solution at 0.1, 0.3 and 0.5 wt%. SEM analysis was carried out to confirm the cross-section and surface condition. It was confirmed that mean pore radius of the hollow fiber increased by 4 nm as FS was added. In addition, contact angle measurement was carried out for the hydrophilicity analysis of hollow fiber membranes, and it was confirmed that the hydrophilicity of MMMs were increased by adding of FS. In the case of water permeability, the membrane including FS showed 91~96 LMH and showed 5~11% more increase than PSf membrane. In the antifouling performance test, relative flux reduction ratios of FS mixed hollow fiber membranes were lower than that of PSf membranes, and it was confirmed that increase of hydrophilicity hinders adsorption of hydrophobic BSA on the membrane surface.

Poly(ether block amide) (PEBA) Based Membranes for Carbon Dioxide Separation (이산화탄소 분리를 위한 PEBA공중합체 기반 분리막)

  • Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Poly(ether block amide) (PEBA) is one of the commercially important class of block copolymer very much suitable specifically for $CO_2$ separation. Gas separation membrane need to have good mechanical strength as well as high gas permeability. The crystalline polyamide (PA) block provides the mechanical strength while the rubbery polyether (PE) group being $CO_2$-philic facilitate $CO_2$ permeation though the membrane. Composition of thermoplastic and rubbery phase in the polymer are changed to fit into suitable gas separation application. Although PEBA has good permeability, the selectivity of the membrane can be enhanced by incorporating molecular sieve without affection much the gas permeability. Mixed matrix membrane (MMM), a class of composite membrane combine the advantage of polymer matrix with the inorganic fillers. However, there are some disadvantages based on the compatibility of the inorganic fillers and polymeric phase. This review covers both the advantage and limitations of PEBA block copolymer based composite membrane.

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes (Poly(ethylene oxide)와 Poly(ethylene-co-vinyl acetate)의 혼합막에 대한 기체분리 특성)

  • Lee, Hyun Kyung;Kang, Min Ji
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.