• Title/Summary/Keyword: mixed oil cake

Search Result 41, Processing Time 0.032 seconds

Application Effects of Organic Fertilizer Utilizing Livestock Horn Meal as Domestic Organic Resource on the Growth and Crop Yields (국내산 유기자원 우각을 활용한 유기질비료의 작물 생육 및 수량에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Lee, Jin-Gu;Yoon, Seuong-Hwan;Hong, Sang Eun;Shin, Ki Hae;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.19-30
    • /
    • 2019
  • Objective of this study was to develop an organic fertilizer utilizing domestic livestock horn meal and to investigate the application effect of rice and eggplant. The possibility of utilization of livestock horn meal as an organic resource to replace imported expeller cake fertilizer was examined. In order to select domestic organic resources with high nitrogen content, 8 kinds of organic matter such as chicken manure, fish meal, soybean meal, sesame meal, perilla meal, blood meal, livestock horn meal, and beer sludge were analyzed and organic resources with high nitrogen content were selected. In addition, the conditions for the production of organic fertilizers that can be used in organic agriculture were established by mixing of the rice husk biochar and the rice bran as the supplements with the raw materials for mixing ratios. The content of total nitrogen (T-N) in the livestock horn meal was 12.0 %, which was the next low in 13.5 % blood meal. The content of total nitrogen was 5.9 ~ 7.9 % in fish meal and oil cakes. Total nitrogen content of non-antibiotic chicken manure for organic farming was 3 % and nitrogen content in beer sludge was 3.5 %. Organic fertilizer was produced by using biochar, rice bran as a main ingredient of non-antibiotic chicken manure, livestock horn meal and beer sludge. Compared to nitrogen content (4.0 to 4.2 %) of imported expeller cake fertilizer (ECF), the nitrogen content of organic fertilizer utilizing domestic livestock horn meal is as high as 7.5 %. The developed organic fertilizer is met as Zn 400 mg/kg, Cu 120 mg/kg the quality of organic agricultural materials such as or less. To investigate the effect of fertilizer application on the crops, prototypes of developed organic fertilizer were used for the experiment under selected conditions. As a result of application the developed organic livestock horn meal fertilizer (LHMF) for cultivation of the rice and eggplant, the application quantity of the developed organic LHMF 100 % was decreased by 40 % compared to that of the mixed expeller cake fertilizer (MECF). The application of LHMF, which refers to the application rate corresponding to the nitrogen fertilization recommended by the soil test, was reduced by 40% compared to the application rate of MECF, but the same results were obtained in crop growth and yield. The selection of a new high concentration nitrogen source utilizing domestic organic resources and the development of organic fertilizer is the starting point of the research for substitution of imported ECF using domestic local resources at the present time that the spread of eco-friendly agriculture is becoming increasingly important. If it is expanded in the future, it is expected to contribute to the stable production of eco-friendly agricultural products.

Changes in Physicochemical Properties and Microbial Population during Fermenting Process of Organic Fertilizer (혼합발효 유기질비료의 발효과정 중 이화학성 및 미생물밀도 변화)

  • Lee, Jong-Tae;Lee, Chan-Jung;Kim, Hee-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.116-123
    • /
    • 2004
  • This study was conducted to investigate the changes in physicochemical and microbiological properties during fermenting process of organic fertilizer which was made from the mixture of organic materials such as sesame oil cake, fish meal, blood meal, rice bran, ground bone meal, and natural minerals such as illite, crusted oyster shell and loess. They were mixed and fermented for 70 days. The sesame oil cake and rice bran, major ingredients for organic fertilizers, consisted of 7.6 and 2.6% total nitrogen, 3.6 and 4.6% $P_2O_5$, 1.4 and 2.2% $K_2O$, respectively. The ground bone meal included 29.2% $P_2O_5$ and illite included 3.8% $K_2O$. Temperature of organic fertilizer during the fermentation rapidly increased over $50^{\circ}C$ within 2 days after mixing and stabilized similar to outdoor temperature after 40 days. Moisture content decreased from 36.3 to 16.0% after 1 month. C/N ratio of organic fertilizer slightly increased until 30 days and thereafter, it slowly decreased, It resulted from the faster decrease of total nitrogen concentration compared with organic matter. Concentration of $NH_4-N$ in organic fertilizer rapidly increased from 1,504 to $5,530mg\;kg^{-1}$, the highest concentration after 10 days. Meantime, $NO_3-N$ concentration was low and constant about $150mg\;kg^{-1}$ over the whole fermenting period. This result seemed to be due to the high pH. The organic ferfilizer fermented for 70 days was composed of 2.7% N, 2.8% $P_2O_5$, 1.8% $K_2O$, and 35.9% organic matter. Total populations of aerobic bacteria, Bacillus sp. and actinomycetes, after fermenting process, were $12.5{\times}10^{10}$, $45.5{\times}10^{5}$ and $13.6{\times}10^{5}cfu\;g^{-1}$ respectively. Pseudomonas sp. was $71.9{\times}10^{7}cfu\;g^{-1}$ at first, but it rapidly decreased according to the rise of temperature. Yeasts played an important role in the early stage of fermentation and molds did in the late stage.

Surface Runoff Loss of Nitrogen and Phosphorus from Peach Orchard (복숭아 과수원에서 측정된 강우에 의한 질소와 인의 지표면 유실)

  • Kim, Min-Kyeong;Kim, Bok-Jin;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.124-129
    • /
    • 2000
  • Nitrogen and P in surface runoff and eroded sediment from cropland areas can contaminate streams and lakes. Runoff losses of N and P were determined in a small field plot $(14.3{\times}24.8\;m)$ of peach orchard from March to November in 1999. Nitrogen and P were applied in the rate of 172 and 46 kg/ha using chemical fertilizer and mixed oil cake fertilizer. During the season, in 26 rainfall events, $421.5\;m^3/ha$ of runoff including 1,989 kg/ha of soil loss was collected. Concentrations of total-N, $NO_3-N$, $NH_4-N$, total-P and $PO_4-P$ in runoff samples were in the range of $4.7{\sim}171.0,\;0.1{\sim}188.0,\;0.13{\sim}3.36$, $0.58{\sim}4.99$ and $0.05{\sim}3.71\;mg/l$, respectively. Total loss of N was 16.39 kg/ha and 75% of the loss was $NO_3-N$. Total loss of P was 1.04 kg/ha, and $PO_4-P$ and sediment bound P accounted for 47 and 27% of the total loss, respectively. The losses of N and P were about 9.5 and 2.3% of the applied N and P in the plot, respectively. Although the loss of N or P would be relatively small in agricultural aspect, considering the high concentrations of N and P in runoff, loss of N and P from croplands should be controlled to reduce the eutrophication problem of stream waters.

  • PDF

Development of Organic liquid Fertilizer for leaf Vegetable under Greenhouse (하우스 엽채류를 위한 관비재배용 유기액비 개발)

  • 주선종;손상목;김진한
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.2
    • /
    • pp.83-99
    • /
    • 2001
  • This experiment was conducted to develop liquid fertilizer for leaf vegetable using the agricultural by-products such as dry chicken dropping, bone meal, rice bran, soybean oil cake and fish meal. Combination of 50% dry chicken dropping, 30% bone meal and 20% rice bran among several combinations of by-products was selected as materials for liquid fertilizer of head lettuce and cabbage. 50kg of materials with combination selected got mixed to 200ι of water, which kept under room temperature in greenhouse. EC and pH of fertilizer was stabilized after 35 days. On the decrease of bad smell during fermentation, addition of materials such as bioceramics, woody vinegar and active charcoal was not effected. And on rapid fermentation, addition of microorganisms and sugar had a little effect, but decreased the content of inorganic nutrients. Fertigation of liquid fertilizer developed on cabbage by dropping made head weight increased by 0.9kg per plant and nitrate content decreased by 276ppm in comparison with chemical fertilizer which was 3.5kg, and 2,426ppm, respectively. By use of organic liquid fertilizer developed in this experiment, yield of cabbage could be more obtained by 26% than in use of chemical fertilizer and income by 24%.

  • PDF

Effects of Different Germination Characteristics, Sowing Date and Rain Sheltered Cultivation on Stable Seed Production in Scutellaria baicalensis Georgi (황금 종자 안정생산을 위한 발아특성, 파종적기, 비가림 시설효과)

  • Kim, Myeong Seok;Kim, Yong Soon;Choi, Jin Gyung;Park, Heung Gyu;Shin, Hae Ryoung;Kim, Seong Il;Kim, Young Guk;Park, Chun Geun;Ahn, Young Sup;Cha, Seon Woo;Kim, Kwan Su
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.2
    • /
    • pp.101-109
    • /
    • 2016
  • Background: The purpose of this study was to evaluate methods to reduce seeding expenses, thereby increasing farm income. This study investigated the effects of rain shelter controlled cultivation and adapted seeding times on the stable seed production of Scutellaria baicalensis Georgi. Methods and Results: Seed germination was conducted under 10 condition compose to control, water washing, cold storage at $4^{\circ}C$ for 15 days, seed sterilization with a benomyl pesticides, hormone treated seed by submerging in 100 ppm $GA_3$ with the cold storage at $20^{\circ}C$ and $25^{\circ}C$, darkness in a covered petridish and illuminated with a 1,500 Lux lamp. There were three cultivation type, open cultivation with non-woven fabric mulching, cultivation with a vinyl covering and rain sheltered in a plastic greenhouse. Sowing dates were April 27, May 18, June 7 and June 28, 2013. Plants were spaced 10 cm apart in rows 30 cm apart. Mixed oil cake fertilizer, $N-P_2O_5-K_2O$ (12-10-10) was applied at $600kg{\cdot}10a^{-1}$. Conclusions: Optimum germination occured in darkness at $25^{\circ}C$ and cold storage after submerging in $GA_3$. The highest seed yields ($4.5kg{\cdot}10a^{-1}$) occurred in the plastic greenhouse for the April 25 sowing. The highest root yield (17%) was found on April 1, under greenhouse conditions.

Impacts of Different Organic Fertilizers on Soil Fertility and Soil Respiration for a Corn (Zea mays L.) Cropping System (옥수수 밭에서 유기질 비료가 토양 비옥도 및 토양 호흡에 미치는 영향)

  • Mavis, Brempong Badu;Hwang, Hyun Young;Lee, Sang Min;Lee, Cho Rong;An, Nan Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.151-163
    • /
    • 2022
  • This study was conducted to promote organic fertilizer(s) that sustain soil productivity for corn production and protect the environment as required by the Act on the promotion of eco-friendly agriculture. It was conducted at the research station of the Organic Agriculture Division of the National Institute of Agricultural. The treatments consisted of Compost (Com), Bokashi as fermented organic fertilizer (FOF), and mixed expeller pressed cake (PC). They were applied at 174 kg N /ha to field corn, together with a 'no fertilizer' check in Randomized Complete Block Design. At eight weeks after transplanting (WAT) corn, compost increased soil carbon (C) and nitrogen (N) to 7.48 and 0.76 g/kg respectively, while other fertilizers maintained the initial levels (before treatment application). At corn harvest (13 WAT), soil chemical properties (total C, total N, pH, electrical conductivity, P2O5, Ca, K, and Mg) were similar among all organic fertilizer treatments. For soil respiration, FOF increased soil CO2 respiration by 31-76% above other fertilizer treatments. However, there were no prominent changes in the trends of CH4 fluxes following the two mechanical weeding operations. Fermented organic fertilizer affected N2O emissions between 87-96% lower than other fertilizer treatments. Compared to the initial microbial densities, FOF increased fungi and actinomycete colony foming unit by 25 and 16% at harvest. Therefore, the additional potential of improving soil biological fertility and local availability of raw materials make FOF a better option to sustain soil productivity while protecting the environment.

Comparison of Liquefying Efficiency of Mixed Organic Fertilizer as Affected by Aeration Time and the Ratio of Organic Fertilizer to Water (폭기시간과 유기질비료 농도에 따른 혼합유기질비료의 액비화 특성비교)

  • Lee, Jong-Tae;Ha, In-Jong;Moon, Jin-Seong;Song, Won-Doo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.156-163
    • /
    • 2007
  • This study was conducted to evaluate the liquefying efficiency of mixed organic fertilizer in different conditions. The organic fertilizer was composed of sesame oil cake, rice bran, fish meal, ground bone meal etc, and made by fermenting process. It included $23g\;kg^{-1}$, $17.0g\;kg^{-1}$, $23.9g\;kg^{-1}$, $290g\;kg^{-1}$ of N, $P_2O_5$, $K_2O$, organic matter, respectively. In one test, the mixed organic fertilizer was added in the proportion of 10% to water 90% and aerated continuously, for 2, 8 hours per day, and not aerated as control. In the other test, ratios of organic fertilizer to water were 5%, 10%, 20% and aerated for 2 hours a day. With the increase of liquefying time, pH, EC and $NH_4-N$ increased without relation to aeration time. After 10 days, liquid organic fertilizer aerated for 2 hours a day contained $634mg\;N\;kg^{-1}$, $68.1mg\;P_2O_5\;kg^{-1}$, $453mg\;K_2O\;kg^{-1}$, which was not significantly different from 8 hours a day or continuous aeration. Then extraction ratios of inorganic contents were 27.6%, 4.0% and 18.9%, respectively. Continuous aeration resulted in increasing the viable number of aerobic bacteria, spore forming bacteria and fungi in liquefied solution. Higher ratio of organic fertilizer to water increased EC, $NH_4-N$ and other inorganic matter contents, but decreased extraction ratio of nutrients in liquid fertilizer. The liquid organic fertilizer of 20% contained $1,140mg\;N\;kg^{-1}$, $35.4mg\;P_2O_5\;kg^{-1}$, $544mg\;K_2O\;kg^{-1}$ after 10 days. Then extraction ratios were 24.8%, 2.4% and 13.6%, respectively. The ratio of organic fertilizer to water was positively correlated with only spore forming bacteria, Pseudomonas spp. among microorganisms.

Fenton-like Reaction for Treatment of Petroleum-Contaminated Silty Clay after Soil Washing Process (토양세척 후의 유류 오염 Silty Clay 처리를 위한 유사펜톤 산화반응)

  • So, Myung-Ho;Ha, Ji-Yeon;Yu, Jae-Bong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This research was performed to assess a Fenton-like oxidation using naturally present iron in the field to treat remained oils throughout silty clay residues which finally resided even after a series of soil washing process. Biodegradability was thus tested for reaction products to investigate a possible treatment of the Fenton-like oxidation coupled with a biological treatment process. For those purposes, two types of field soil samples (e.g., dewatered cake after conditioning with a polymer and not-dewatered residue) were tested to remove TPH by adding the various concentration of hydrogen peroxide ($H_2O_2$). Moreover the biodegradability of treated samples was observed based on the ratio of $BOD_5/COD_{Cr}$ after Fenton-like oxidation. The Highest removal of TPH was at 1% of hydrogen peroxide ($H_2O_2$) when hydrogen peroxide ($H_2O_2$) was continuously injected for a period of time rather than that of spot introduction with the same amount of it. For the dewatered cake, TPH was effectively treated when the ratio of solid and water was mixed at 1 : 2. Employing cooking oil could increase solubility of TPH due to enhanced surface-active escalating TPH desorption from silty clay. Nonetheless, the biodegradability was decreased as long as the oxidation duration being extended regardless of operational conditions. It was therefore proved that Fenton-like oxidation using $H_2O_2$ and natural iron minerals was able to remove adsorbed oils in silty clay but the removal efficiency of TPH was low. And if a biological treatment process followed after Fenton-like oxidation, microorganisms would need enough time for acclimation.

Study on the Activation Plan for Utilization of Agri-food by-products as Raw Materials for TMR (TMR 원료로 이용하는 농식품 부산물 사료 이용 활성화 방안에 관한 연구)

  • Chung, Sung Heon;Park, Hyun Woo;Kwon, Byung Yeon;Gu, Gyo Yeong;Bang, Seo Yeon;Park, Kyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.296-306
    • /
    • 2014
  • This study was conducted to survey and analyze the quantity of various organic wastes and to vitalize the utilization of agri-food by-products as raw materials for Total mixed ration (TMR), to improve feed cost savings and the quality of animal products. On-the-spot obstacles for animal farmers, along with legal and institutional alternatives are presented. The results are as follows. First, organic wastes in Korea are managed by the Allbaro system created in the Wastes Control Act, which processes 10,488 tons of cooking oil waste, 832,493 tons of animal and plant residues, 5,740 tons of animal carcasses, 1,171,892 tons of animal residues, and 2,172,415 tons of plant residues including 12,905 tons of rice hull and bran, for a total of 4,205,931 tons. Raw materials for TMR, namely rice hulls and bran as well as plant residues, accounted for 51.7% of the total national organic waste. The top 10 municipalities process 76~100% of all organic wastes and a supply management system is needed for the waste. Second, the 10 major agri-food by-products used as raw materials for TMR are bean curd by-product, rice bran, oil-cake, brewers dried grain, Distiller's Dried Grains with Solubles (DDGS), barley bran, soy sauce by-product, citrus fruit by-product, mushroom by-product and other food by-product (bread, noodles, snacks, etc.). Third, the biggest difficulties in using agri-food by-products are legal obstacles. Because agri-food by-products are regulated as industrial wastes by the Waste Control Act, animal farmers that wish to use them have legal reporting obligations including the installation of recycling facilities. To enable the use of agri-food by-products as raw materials for TMR, waste management system improvements such as 'the end of waste status' and the establishment of more than 10 public distribution centers nationwide are deemed essential.

Effect of Organic Fertilizers on Growth and Yield of Achyranthes japonica N. (유기질(有機質) 비종(肥種)이 쇠무릎 생육(生育) 및 수량(收量)에 미치는 영향(影響))

  • Kim, Myeong-Seok;Chung, Byeong-Jun;Park, Gyu-Chul;Park, Tae-Dong;Kim, Sang-Chul;Shim, Jae-Han
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.2
    • /
    • pp.131-136
    • /
    • 1998
  • This experiment was carried out to investigate the effect of several organic fertilizers on the growth and root yield of Achyranthes japonica N. from 1995 to 1996. Four organic fertilizers were applied: rice straw manure (RSM), fermented rice straw manure (FRSM), mixed oil cake manure (MOCM) and mighty soil manure (MSM). Organic matter, available phosphate, $K_2O$, CaO, and MgO of soil increased in all plots with the addition of organic fertilizers, specifically with MOCM application. The highest contents of total nitrogen were 6.16% for MOCM and the available phosphate contents were very high in all of organic fertilizers except MSM. RSM and MSM with C/N ratios of 22.5, 17.7, respectively, were easily decomposed but C/N ratios of FRSM and MOCM, which were considered as irresolvable organic fertilizers, were 40.9 and 8.4, respectively. FRSM and MOCM applications increased emergence rate and improved the growth characters of shoot and root parts of plants compared to those of N - P - K fertilization. The highest dry root yield resulted from FRSM 20% and MOCM 26% treatment. There were significantly positive correlations between the growth characters of shoot, root parts of plants and dry root yield in A. japonica grown under organic fertilizer applications.

  • PDF