DOI QR코드

DOI QR Code

옥수수 밭에서 유기질 비료가 토양 비옥도 및 토양 호흡에 미치는 영향

Impacts of Different Organic Fertilizers on Soil Fertility and Soil Respiration for a Corn (Zea mays L.) Cropping System

  • Mavis, Brempong Badu (Legumes and Oil Seeds Division, Crops Research Institute) ;
  • Hwang, Hyun Young (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Lee, Sang Min (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • Lee, Cho Rong (Organic Agriculture Division, National Institute of Agricultural Sciences) ;
  • An, Nan Hee (Organic Agriculture Division, National Institute of Agricultural Sciences)
  • 투고 : 2022.11.14
  • 심사 : 2022.12.19
  • 발행 : 2022.12.30

초록

본 연구는 친환경 농산물 생산을 위한 양분관리 자재로 유기질비료 처리에 따른 옥수수 재배 토양의 비옥도 및 토양 호흡에 미치는 영향을 분석하였다. 시험장소는 국립농업과학원 유기농업과 시험포장에서 수행하였으며 처리구는 퇴비 (Com), 발효비료 (FOF), 혼합 유박 (PC), 무비구 (NF)로 처리구당 3반복 완전임의 배치하였다. 처리량은 174kg N/ha로 옥수수 표준시비량의 질소기준에 준하여 처리하였다. 옥수수 정식 8주 후 토양분석 결과, 퇴비는 토양의 탄소 (C)와 질소 (N)를 각각 7.48 및 0.76g/kg으로 증가시켰고, 다른 처리구는 시험 전과 차이가 없었다. 또한 시험 후 토양의 화학적 특성은 무비구를 제외하고 유의한 차이는 없었다. 토양 CO2 발생량은 발효비료 처리가 다른 처리구보다 31-76% 증가시켰으며 두 번의 제초작업 후 CH4 발생량의 차이는 없었다. 토양의 N2O 배출량은 발효비료 처리가 다른 처리구보다 87-96% 감소되었다. 미생물 밀도 조사 결과, 시험 전에 비해 시험 후 토양의 사상균 및 방선균 밀도를 각각 25%, 16% 증가되었다. 따라서 친환경 농산물 생산을 위한 발효비료 등 유기질 비료는 자원을 순환하며 토양 생산성을 유지하는데 기여할 것이다.

This study was conducted to promote organic fertilizer(s) that sustain soil productivity for corn production and protect the environment as required by the Act on the promotion of eco-friendly agriculture. It was conducted at the research station of the Organic Agriculture Division of the National Institute of Agricultural. The treatments consisted of Compost (Com), Bokashi as fermented organic fertilizer (FOF), and mixed expeller pressed cake (PC). They were applied at 174 kg N /ha to field corn, together with a 'no fertilizer' check in Randomized Complete Block Design. At eight weeks after transplanting (WAT) corn, compost increased soil carbon (C) and nitrogen (N) to 7.48 and 0.76 g/kg respectively, while other fertilizers maintained the initial levels (before treatment application). At corn harvest (13 WAT), soil chemical properties (total C, total N, pH, electrical conductivity, P2O5, Ca, K, and Mg) were similar among all organic fertilizer treatments. For soil respiration, FOF increased soil CO2 respiration by 31-76% above other fertilizer treatments. However, there were no prominent changes in the trends of CH4 fluxes following the two mechanical weeding operations. Fermented organic fertilizer affected N2O emissions between 87-96% lower than other fertilizer treatments. Compared to the initial microbial densities, FOF increased fungi and actinomycete colony foming unit by 25 and 16% at harvest. Therefore, the additional potential of improving soil biological fertility and local availability of raw materials make FOF a better option to sustain soil productivity while protecting the environment.

키워드

과제정보

This project was supported by Korea-Africa Food and Agriculture Cooperation Initiative (KAFACI) and the Organic Agriculture Division of National Institute of Agricultural Science, Rural Development Administration, under the project number, PJ015990012022.

참고문헌

  1. Abulu, L., "In South Korea, centuries of farming point to the future for sustainable agriculture. News & Inspiration from Nature's frontline". (2020).
  2. An, N. H., Lee, S. M. and Oh, E. M., "Application effects of fermented mixed organic fertilizer utilizing by-products on yield of Chinese cabbage and soil environment", J. of KORRA, 28(4), pp. 77~85. (2020).
  3. Bergsma, A., Cardenas, L. M. and Bol, R., "Effect of antecedent soil moisture conditions on emissions and isotopologue distribution of N2O during denitrification", Soil Biol. Biochem., 43(2), pp. 240~250. (2011). https://doi.org/10.1016/j.soilbio.2010.10.003
  4. Bista, P., Norton, U. and Ghimire, R., "Effects of tillage system on greenhouse gas fluxes and soil mineral nitrogen in wheat (Triticum aestivum L.)-fallow during drought", J. Arid. Environ., 147, pp. 103~113. (2017). https://doi.org/10.1016/j.jaridenv.2017.09.002
  5. Botta, C., "Understanding your soil test. Beyond soil acre. National Landcare Program". (2016).
  6. Brempong, M. B, Norton, U. and Norton, J. B., "Compost and soil moisture effects on seasonal carbon and nitrogen dynamics, greenhouse gas fluxes and global warming potential of semi-arid soils", Int. J. Recyc. Orga. Waste. Agric., 8(1), pp. 367~376. (2019). https://doi.org/10.1007/s40093-019-00309-4
  7. Bridgham, S. and Richardson, C., "Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands", Soil Biol, Biochem., 24(11), pp. 1089~1099. (1992). https://doi.org/10.1016/0038-0717(92)90058-6
  8. Cai, Y. and Chang, S. X., "Disturbance effects on soil carbon and greenhouse gas emissions in forest ecosystems", Forests, 11(3), pp. 297~301. (2020). https://doi.org/10.3390/f11030297
  9. Choi, H. S., "Effects of organic liquid fertilizers on biological activities and fruit productivity in open-field cherry tomato", Soil and Plant Nutr., 79(3), pp. 447~457. (2020).
  10. Conant, R.T., Klopatek, J. M. and Klopatek, C. C., "Environmental factors controlling soil respiration in three semiarid ecosystems", Soil. Sci. Soc. Am. J., 64(1), pp. 383~390. (2000). https://doi.org/10.2136/sssaj2000.641383x
  11. Furuno, T., "The power of duck: integrated rice and dick farming", Tagari, Sisters Creek. (2001).
  12. Goyal, S., Inubushi, K. and Kato, S., "Effect of anaerobically fermented manure on soil organic matter, microbial properties and growth of spinach under greenhouse conditions", Indian J Microbiology, 39(4), pp. 211~216, (1999).
  13. Grave, R. A., Nicoloso, R. and Cassol, P. C., "Short-term carbon dioxide emission under contrasting soil disturbance levels and organic amendments", Soil & Till Res., 146(B), pp. 184~192. (2015). https://doi.org/10.1016/j.still.2014.10.010
  14. Hwang, H. Y., Kim, G. W. and Kim, S. Y., "Effect of cover cropping on the net global warming potential of rice paddy soil", Geoderma, 292, pp. 49~58. (2017). https://doi.org/10.1016/j.geoderma.2017.01.001
  15. Islam, M. N., "Impact of organic fertilizer on physical and chemical properties of soil as well as yield and quality of mango", J. Bangla. Soc. Agric. Sci. Technol., 9(1-2), pp. 167~170. (2012).
  16. Jayasundara, J. M. N., Jayasekara, R. and Ratnayake, R. M. C. S., "Liquid organic fertilizers for growth enhancement of Abelmoschus esculentus L. Moenche and Alternanthera sessilis L. DC", Tropical Plant Res., 3(2), pp. 334-340. (2016).
  17. Kim, G. T., Park, J. and Lee, S.H., "Characterization of methanotrophic communities in soils from regions with different environmental settings", Korean J. Microbiol. Biotechnol., 40(2), pp. 152~156. (2012). https://doi.org/10.4014/kjmb.1202.02001
  18. Kim, Y. S., Kim, C. and Hyun, S., "Biochar research trends and perspectives in South Korea based on a bibliometric analysis" J. Korea Soc. Waste Manage., 33(3), pp. 1~17. (2016). https://doi.org/10.9786/kswm.2016.33.1.1
  19. Korkiakoshi, M., Maatta, T. and Peltoniemi, K., "Excess soil moisture and fresh carbon input are prerequisites for methane production in podzolic soil" Biogeosci., 19(7), pp. 2025~2041. (2022). https://doi.org/10.5194/bg-19-2025-2022
  20. Kruger, "Corn irrigation timing and water use efficiency". (2021).
  21. Lee, K. H., "Composting and recycling urban food wastes in Korea with effective microorganisms", Korea Nature Farming Research Center. (2000).
  22. Lehrsch, G. A., Brown, B. and Lentz, R. D., "Winter and growing season nitrogen mineralization from fall-applied composted or stockpiled solid dairy manure", Nutr. Cycl. Agroecosyst., 104(2), pp. 125~142. (2016). https://doi.org/10.1007/s10705-015-9755-9
  23. Lou, Y., Li, Z. and Zhang, T., "CO2 emissions from subtropical arable soils of China", Soil Biol. Biochem., 36(11), pp. 1855~1842. (2004).
  24. MacDonald, V., "Know your soils, Understanding soil sodicity", Southern Queensland Landscapes. (2021).
  25. Merfield, C., "Treating food preparation waste by bokashi fermentation vs. composting for crop land application: A feasibility and scoping review", Permanent Agriculture and Horticulture Science and Extension. (2012).
  26. Michael, P. S., "The roles of organic fertilizers in the management of nutrient deficiency, acidity and toxicity in acid soils", JOGAE, 12(3), pp. 19~30. (2021).
  27. Mockeviciene, I., Repsiene, R., Amaleviciute, K., Danute, K., Alvyra, S. and Viia, L., "Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil", Arch. Agron. & Soil Sci., 68(9), pp. 1192~1204. (2021).
  28. Muratore, C., Espen, L. and Prinsi, B., "Nitrogen uptake in plants: The plasma membrane root transport systems from a physiological and proteomic perspective", Plants, 10(4), pp. 681~706. (2021). https://doi.org/10.3390/plants10040681
  29. Mylavarapu, R., Bergeron, J. and Wilkinson, N., "Soil pH and electrical conductivity: A county extension soil laboratory manual", UF, IFAS Extension. Uni. Florida. (2020).
  30. Nieves-Cordones, M., Al Shiblawi, F. R. and Sentenac, H., "Roles and Transport of Sodium and Potassium in Plants" Met Ions Life Sci., 16, pp. 291~324. (2016). https://doi.org/10.1007/978-3-319-21756-7_9
  31. Ojo, O. I., Olajire-Ajayi, B. L., Dada, O. V. and Wahab, O., "Effects of fertilizers on soil's microbial growth and populations: a review", American J. Engine. Res., 4(7), pp. 52~61. (2015).
  32. Park, J. H., Park, S. J., Kwon, O. H., Choi, S. Y. and Park, S. D., "Effect of green manure cultivations on yield and anthocyanin content in organic grapevine" Korean J. Organic Agri., 23(2), pp. 281~289. (2015). https://doi.org/10.11625/KJOA.2015.23.2.281
  33. Pretty, J. N. and Hine, R., "The promising spread of sustainable agriculture in Asia" Nat. Res. Forum, 24(2), pp. 107~121. (2009). https://doi.org/10.1111/j.1477-8947.2000.tb00936.x
  34. Provin, T. and Pitt, J. L., "Managing soil salinity", Agrilife Extension. Texas A&M System. (2001).
  35. Raich, J. W. and Tufekciogul, A., "Vegetation and soil respiration: correlations and controls", Biogeochem., 48(1), pp. 71~90. (2000). https://doi.org/10.1023/A:1006112000616
  36. Ray, R. L., Griffin, R. W., Fares, A., Elhassan, A., Awal, R., Woldesenbet, S. and Risch, E., "Soil CO2 emission in response to organic amendments, temperature, and rainfall", Sci. Rep., 10(1), pp. 1~14. (2020). https://doi.org/10.1038/s41598-019-56847-4
  37. RDA (Rural development administration). Soil and plant analysis. Rural Development Administration, Suwon, Korea. (2000).
  38. Rolston, D. E., "Gas flux", Klute A. (Ed.), Methods of soil analysis part 1 (2nd ed.), Agronomy Monograph 9, ASA and SSSA, Madison, pp. 1103~1119. (1986).
  39. Roy, S. and Chowdhury, N., "Effects of leaching on the reclamation on saline soils as affected by different organic and inorganic amendments", J Environ Sci. and Sustain Develo, 3(2), pp. 329~354. (2020).
  40. Shah, K., Tripathi, S., Tiwari, I., Shrestha, J., Modi, B., Paudel, B. and Das, B.D., "Role of soil microbes in sustainable crop production and soil health: A review", Agric. Sci. and Tech., 13(2), pp. 109~118. (2021).
  41. Silva-Sanchez, A., Soares, M. and Rousk, J., "Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH and organic matter quality", Soil Biol. Biochem., 134, pp. 25~35. (2019). https://doi.org/10.1016/j.soilbio.2019.03.008
  42. Smith, K., Bouwman, L. and Braatz, B., "N2O: Direct emissions from agricultural soils", IPCC. (2000).
  43. Songsong, G., Hu, Q., Cheng, Y., Bai, L., Liu, Z., Xiao, W., Gong, Z., Wu, Y., Feng, K., Deng, Y. and Tan, L., "Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils", Soil & Till. Res., 195, p. 104356. (2019). https://doi.org/10.1016/j.still.2019.104356
  44. Suh, J., "Towards sustainable agriculture stewardship: evolution and future directions of the permaculture concept", Environ. Values, 23(1), pp. 75~98. (2014). https://doi.org/10.3197/096327114X13851122269089
  45. Suh, J., "Sustainable agriculture in the Republic of Korea", Sustainable Agriculture Review, 27, pp. 193~211. (2018). https://doi.org/10.1007/978-3-319-75190-0_7
  46. Toor, M. D. and Adnan, M., "Role of soil microbes in agriculture: A review", Op. Acc. J. Bio. Sci. and Res., 3(5), pp. 1~5. (2020).
  47. Um, M. H. and Lee, Y., "Quality control for commercial compost in Korea", RDA-NIAST. pp. 1~12. (2001).
  48. USDA, "Soil quality indicators: Total organic carbon, Soil Quality for Environmental Health". soilquality.org/indicators/total_organic_carbon (Accession date: October 1, 2022)
  49. Valero, D., Rico, C., Canto-Canche, B., Dominguez-Maldonado, J.A., Tapia-Tussell, R., Cortes-Velazquez, A. and Alzate-Gaviria, L., "Enhancing biochemical methane potential and enrichment of specific electro-active communities from nixtamalization wastewater using granular activated carbon as a conductive material", Energies, 11(8), pp. 2101~2119. (2018). https://doi.org/10.3390/en11082101
  50. Wang, C., Amon, B., Schulz, K. and Mehdi, B., "Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A review", Agronomy, 11(4), pp. 1~30. (2021).
  51. Wang, X. L., Park, S. H., Zhang, Q., Lee, B. R. and Kim, T. H., "NH3, CO2 and N2O emissions in relation to soil mineralization from the soils amended with different manures in vitro incubation", J. Korean Soc. Grassland & Forage Sci., 37(3), pp. 195~200. (2017). https://doi.org/10.5333/KGFS.2017.37.3.195
  52. Wang, Z. P., Delaune, R. D., Patrick, W. H. Jr. and Masscheleyn, P. H., "Soil redox and pH effects on methane production in a flooded rice soil", SSSAJ, 57(2), pp. 382~385. (1993). https://doi.org/10.2136/sssaj1993.03615995005700020016x
  53. Wingeyer, A. B., "The effect of residue C:N ratio on the turnover of N and C in various soil organic matter fractions", Master Thesis, Dissertations and Student Research in Agronomy and Horticulture, p. 42. (2007).
  54. Yang, Y., Liu, H. and Lv, J., "Response of N2O emission and denitrification genes to different inorganic and organic amendments", Sci. Rep., 12(1), pp. 1~8. (2022). https://doi.org/10.1038/s41598-021-99269-x