• Title/Summary/Keyword: mixed microorganisms

Search Result 217, Processing Time 0.036 seconds

Root Colonization by Beneficial Pseudomonas spp. and Bioassay of Suppression of Fusarium Wilt of Radish (유용 Pseudomonas 종의 근면점유와 무우 Fusarium시들음병의 억제에 관한 생물학적 정량)

  • Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.10-19
    • /
    • 1997
  • Fusarium wilt of radish (Raphanus sativus L.) is caused by the Fusarium oxysporum f. sp. raphani (FOR) which mainly attacks Raphanus spp. The pathogen is a soil-borne and forms chlamydospores in infected plant residues in soil. Infected pathogen colonizes the vascular tissue, leading to necrosis of the vascular tissue. Growth promoting beneficial organisms such as Pseudomonas fluorescens WCS374 (strain WCS374), P. putida RE10 (strain RE10) and Pseudomonas sp. EN415 (strain EN415) were used for microorganisms-mediated induction of systemic resistance in radish against Fusarium wilt. In this bioassy, the pathogens and bacteria were treated into soil separately or concurrently, and mixed the bacteria with the different level of combination. Significant suppression of the disease by bacterial treatments was generally observed in pot bioassy. The disease incidence of the control recorded 46.5% in the internal observation and 21.1% in the external observation, respectively. The disease incidence of P. putida RE10 recorded 12.2% in the internal observation and 7.8% in the external observation, respectively. However, the disease incidence of P. fluorescens WCS374 which was proved to be highly suppressive to Fusarium wilt indicated 45.6% in the internal observation and 27.8% in the external observation, respectively. The disease incidence of P. putida RE10 mixed with P. fluorescens WCS374 or Pseudomonas sp. EN415 was in the range of 10.0-22.1%. On the other hand, the disease incidence of P. putida RE10 mixed with Pseudomonas sp. EN415 was in the range of 7.8-20.2%. The colonization by FOR was observed in the range of $2.4-5.1{\times}10^3/g$ on the root surface and $0.7-1.3{\times}10^3/g$ in the soil, but the numbers were not statistically different. As compared with $3.8{\times}10^3/g$ root of the control, the colonization of infested ROR indicated $2.9{\times}10^3/g$ root in separate treatments of P. putida RE10, and less than $3.8{\times}10^3/g$ root of the control. Also, the colonization of FOR recorded $5.1{\times}10^3/g$ root in mixed treatments of 3 bacterial strains such as P. putida RE10, P. fluorescens WCS374 and Pseudomonas sp. EN415. The colonization of FOR in soil was less than that of FOR in root part. Based on soil or root part, the colonization of ROR didn't indicate a significant difference. The colonization of introduced 3 fluorescent pseudomonads was observed in the range of $2.3-4.0{\times}10^7/g$ in the root surface and $0.9-1.8{\times}10^7/g$ in soil, but the bacterial densities were significantly different. When growth promoting organisms were introduced into the soil, the population of Pseudomonas sp. in the root part treated with P. putida RE10 was similar in number to the control and recorded the low numerical value as compared with any other treatments. The population density of Pseudomonas sp. in the treatment of P. putida RE10 indicated significant differences in the root part, but didn't show significant differences in soil. The population densities of infested FOR and introduced bacteria on the root were high in contrast to those of soil. P. putida RE10 and Pseudomonas sp. EN415 used in this experiment appeared to induce the resistance of the host against Fusarium wilt.

  • PDF

The Effects of Negative- and Positive- Charged Surfactants on In vitro DM Digestibility and the Growth of Ruminal Mixed Microorganisms (양(+) 이온성 및 음(-) 이온성 계면활성제 첨가가 반추위 혼합 미생물에 의한 In vitro 건물소화율 및 미생물 성장에 미치는 영향)

  • Lee, S.J.;Shin, N.H.;Kim, W.Y.;Moon, Y.H.;Kim, H.S.;Ha, J.K.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • In order to investigate the effects of supplemental ionic surfactants in in vitro ruminal fermentation, N-Lauroylsarcosine sodium salt(N-LSS) and sodium dodecyl sulfate(SDS) for negative(-) ionic surfactant, and hexadecylpyridinium chloride monohydrate(HPCM) and hexadecyltrimethyl ammonium bromide(HTAB) for positive (+) ionic surfactant were supplemented by 0.05% and 0.1% into the Dehority’s artificial medium containing rice straw(1mm) as a substrate. In vitro DM digestibility, the growth of rumen mixed microbes, pH, cumulative gas production and SEM(Scanning Electron Microscopy) observation of microbial attachment on rice straw particle were investigated through the experiment composing 9 treatments (two supplemental levels of two positive ionic(+) surfactant, two supplemental levels of two negative(-) ionic surfactant) including the control. The sample collection was at 6, 12, 24, 48 and 72 h post fermentation with 3 replications per treatments. DM digestibility in treatments supplemented (+) or (-) surfactants almost stopped afterward 12 h fermentation, in vitro DM digestibility at 72 h post fermentation in the ionic surfactants was at half level of that of the control(P<0.05). Accumulative gas production in in vitro was less(P<0.05) with addition of ionic surfactants compared to the control. The amount of rumen mixed microbes recovered from in vitro incubation fluid pleateaued at 12 h post fermentation for the positive (+) ionic surfactants, but steadily increased as fermentation time elapsed for the control. Rumen microbial growth rate was significantly(P<0.05) low in the negative(-) ionic surfactant compared to the control. pH of the incubation fluid was ranged from 6.02 to 7.20, and was the highest in the negative(-) ionic surfactants, and was the lowest in the control(P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was less with addition of ionic surfactants than the control. In conclusion we could not found any positive effects of negative- and positive- charged surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry (양돈슬러리를 이용한 혐기소화에서 미생물 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Jeong, Kwang-Hwa;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1049-1057
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of pig slurry supplemented with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS, M+RA+FS, and control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 60 days at $38^{\circ}C$ using anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum. In results, 5% RF and RA+FS increased total biogas up to 8.1 and 8.4%, respectively, compared with that of control (p<0.05). All 5% microbial culture supplements significantly increased methane production up to 12.1~17.9% compared with that of control (p<0.05). Total solid (TS) and volatile solid (VS) digestion efficiencies showed no relationship to the increased supplementation levels of microbial cultures. After incubation, pH values in all treatment groups ranged between 7.527 and 7.657 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that both hydrolysis and methanogenesis stages for methane production in anaerobic batch reactors were influenced by the supplemented microorganisms due to the chemical characteristics of pig slurry, but only the 5% supplementation level of all microbial culture supplements used in the experiment affected methane production.

Effects of Non-ionic or Zwitterionic Surfactant on in vitro Digestibility of Rice Straw and Growth of Rumen Mixed Microorganisms. (비이온성 및 양쪽 이온성 계면활성제 첨가가 반추위 혼합 미생물의 성장과 볏짚의 in vitro 소화에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.515-521
    • /
    • 2008
  • This experiment was conducted to investigate effects of non-ionic or zwitterionic (+/-) surfactants on digestibility of rice straw, and changes of growth of rumen mixed microbes, pH, and gas production during in vitro fermentation. Also, during in vitro ruminal fermentation, microbial attachment on rice straw was investigated using scanning electron microscopy (SEM). Tween 80 or SOLFA-850 for non-ionic surfactant (NIS), and 3-(Dodecyldimethylammonio) propanesulfanate (DDAP) for zwitterionic surfactant (ZIS) was supplemented by 0.05% and 0.1% in Dehority's artificial medium containing Holtein rumen fluid, respectively, and the substrate for fermentation was rice straw passed through 1 mm screen. The experiment was composed of 7 treatments (two levels of two NISs, two levels of a ZIS) including the control, and 6, 12, 24, 48 and 72 hr of fermentation time with 3 replications per treatment. Treatment of Tween 80 increased in vitro DM digestibilities during 48 hr and 72 h post fermentations compared to the other treatments, whereas treatment of DDAP as a ZIS resulted in decreased DM digestibility than that of the control from 24 hr post fermentation (P<0.05). Gas production in vitro was greater (P<0.05) with addition of NIS than the control or ZIS, and increased as fermentation time elapsed. Rumen mixed microbial growth was greatest with addition of Tween 80 as NIS, and lowest when DDAP as ZIS was supplemented to the fermentation tube (P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was greater with addition of NIS, but was less with addition ZIS compared with the control. In conclusion we could not found any positive effects of ZIS surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

Comparison of Liquefying Efficiency of Mixed Organic Fertilizer as Affected by Aeration Time and the Ratio of Organic Fertilizer to Water (폭기시간과 유기질비료 농도에 따른 혼합유기질비료의 액비화 특성비교)

  • Lee, Jong-Tae;Ha, In-Jong;Moon, Jin-Seong;Song, Won-Doo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.156-163
    • /
    • 2007
  • This study was conducted to evaluate the liquefying efficiency of mixed organic fertilizer in different conditions. The organic fertilizer was composed of sesame oil cake, rice bran, fish meal, ground bone meal etc, and made by fermenting process. It included $23g\;kg^{-1}$, $17.0g\;kg^{-1}$, $23.9g\;kg^{-1}$, $290g\;kg^{-1}$ of N, $P_2O_5$, $K_2O$, organic matter, respectively. In one test, the mixed organic fertilizer was added in the proportion of 10% to water 90% and aerated continuously, for 2, 8 hours per day, and not aerated as control. In the other test, ratios of organic fertilizer to water were 5%, 10%, 20% and aerated for 2 hours a day. With the increase of liquefying time, pH, EC and $NH_4-N$ increased without relation to aeration time. After 10 days, liquid organic fertilizer aerated for 2 hours a day contained $634mg\;N\;kg^{-1}$, $68.1mg\;P_2O_5\;kg^{-1}$, $453mg\;K_2O\;kg^{-1}$, which was not significantly different from 8 hours a day or continuous aeration. Then extraction ratios of inorganic contents were 27.6%, 4.0% and 18.9%, respectively. Continuous aeration resulted in increasing the viable number of aerobic bacteria, spore forming bacteria and fungi in liquefied solution. Higher ratio of organic fertilizer to water increased EC, $NH_4-N$ and other inorganic matter contents, but decreased extraction ratio of nutrients in liquid fertilizer. The liquid organic fertilizer of 20% contained $1,140mg\;N\;kg^{-1}$, $35.4mg\;P_2O_5\;kg^{-1}$, $544mg\;K_2O\;kg^{-1}$ after 10 days. Then extraction ratios were 24.8%, 2.4% and 13.6%, respectively. The ratio of organic fertilizer to water was positively correlated with only spore forming bacteria, Pseudomonas spp. among microorganisms.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Study on Detection of Oral Bacteria in the Saliva and Risk Factors of Adults (성인의 타액 내 구강세균 검출과 위험요인에 관한 연구)

  • Hong, Min-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5675-5682
    • /
    • 2014
  • As oral diseases are developed by mixed infections, not by any single element, an accurate analysis of the causative microorganisms related to dental caries and periodontal diseases is required. In this study, saliva was collected from selected adults to determine if the bacteria that are well known as the causative microorganisms of dental caries and periodontal diseases would be detected in their saliva. In addition, this study examined whether there would be any differences among adults according to age, smoking, drinking and presence or absence of diseases in the distribution of oral bacteria to determine the risk factors for oral bacteria. The study subjects were 120 adults ranging in age from 20 to 65 years. The experiment data was collected from March 15, to May 2014. The gDNA was collected from the saliva, and the distribution of bacteria for oral diseases was investigated by PCR. The findings of the study were as follows. S. mutans was detected from 72 adults, and P. intermedia was detected from 88 adults. Both bacteria were detected from 54 adults, and no oral bacteria was detected in 14 adults. An analysis of the risk factors of oral bacteria showed that smokers had a 2.8-fold higher risk of S. mutans than nonsmokers, and the former had a 3.5-fold higher risk of P. intermedia than the latter. Drinkers had a 3.3-fold higher risk of S. mutans than nondrinkers. Patients who suffered from systemic diseases had a 4.1-fold higher risk of P. intermedia than those with no diseases. Therefore, smoking, drinking and systemic diseases are factors that increase the likelihood of oral bacteria detection. More periodontal disease bacteria were detected from older adults, and more oral bacteria were found in adults who were in their 20s, as dental caries and periodontal diseases were more common in this age group. The adults in which oral bacteria were detected are more likely to have dental caries or periodontal diseases, and they should try to keep their mouth cavity clean and make regular visits to a dental clinic to prevent possible oral diseases.

Antioxidant and Antibacterial Activities of Grape Pomace Fermented by Various Microorganisms (발효 미생물에 따른 포도가공 부산물의 항산화 활성 및 항균활성)

  • Kim, Kyoung-Hee;Yun, Young-Sik;Chun, Se-Young;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1049-1056
    • /
    • 2012
  • The antioxidant activities and antibacterial activities of grape pomace fermented using a variety of useful microorganisms were analyzed. There were several experimental groups: the control, with non-fermented grape pomace; the BS group, fermented by Bacillus subtilis; the LP group, fermented by Lactobacillus plantarum; the LC group, fermented by L. casei; the CU group, fermented by Candida utilis; the Y1 group, fermented by Saccharomyces cerevisiae strain CHY1011; the Y2 group, fermented by S. cerevisiae strain ZP 541; and the M group, fermented by a mixed strain culture of LP, LC, and CU. The yield of freeze-dried powder of fermented grape pomace by BS, LP, LC, CU, Y1, Y2, and M was 10.74%, 9.36%, 8.68%, 9.55%, 7.49%, 9.60%, and 9.71% w/w, respectively. The total polyphenol content of grape pomace showed the highest value in the control, but the fermented LP had higher total polyphenol content than those of other fermented grape pomace. The control and fermented LP had 0.16 mg/mL and 0.28 mg/mL as $IC_{50}$ values on DPPH radical scavenging, and 0.22 mg/mL and 0.53 mg/mL of ABTS radical scavenging activity, respectively. The FRAP value (5 mg/mL) showed the highest value on fermented LP (2.44 mM) but did not show a significant difference in the control group (12.27 mM). The fermented LC showed the antimicrobial activities against B. cereus (11 mm), B. subtilis (11 mm), Staphylococcus aureus (12 mm), Escherichia coli (12 mm), Enterobacter cloacae (10.5 mm), Salmonella enterica (11.5 mm), and Pseudomonas aerugionsa (11 mm) at 5 mg/disc, but the control and other fermented grape pomace did not show antimicrobial activities. Thus, fermented grape pomace by LC is shown to be producing a material that has antibacterial activity. In conclusion, grape pomace fermentation using various lactic acid bacteria strains showed excellent effects in promoting the production of functional materials. Especially, using L. casei exhibited an increase in antibacterial activity, and using L. plantarum exhibited antioxidant activity.

Isolation and Characterization of Cellulolytic Anaerobic Fungi from the Guts of the Hanwoo Cattle and the Korean Native Goat (한우 및 산양의 장내 섬유소 분해 혐기 곰팡이의 분리 및 특성 구명)

  • Kim, C.H.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.1019-1030
    • /
    • 2003
  • The study was conducted to isolate and identify highly fibrolytic anaerobic fungi from the guts of a Hanwoo steer and a Korean native goat, and then investigate the characterization of cellulolytic activity of an anaerobic fungus. Twenty-one anaerobic fungal colonies were isolated in the study, in which 16 colonies were isolated from the rumen contents of the Hanwoo steer and 5 colonies from the duodenal fluids of the Korean native goat. Four anaerobic fungi were selected based on higher cellulolytic enzyme activities to identify under a optical microscope. NLRI-M003 and -T004 belong to Neocallimastix genus and NLRI-M014 belongs to Piromyces genus based on the morphology of their thallus, sporangia, rhizoid and the number of flagella. NLRI-M001 appeared to be an unknown strain of anaerobic fungi due to its different morphology from existing types of anaerobic fungi, though the morpholgoy is similar to Orpinomyces sp. Supplementation of 2% anaerobic fungal culture(NLRI-M003) in rumen-mixed microorganisms increased in vitro DM degradability of rice straw and filter paper up to 4 and 11%, respectively, compared with non-supplementation(control). CMCase and xylanase activities in in vitro culture were also higher in 2% fungal supplementation than controls in both rice straw and filter paper substrates.

Isolation and In Vitro Antimicrobial Activity of Low Molecular Phenolic Compounds from Burkholderia sp. MP-1 (Brukholderia sp. MP-1 에서의 페놀화합물의 분리와 항균활성의 측정)

  • Mao, Sopheareth;Jin, Rong-De;Lee, Seung-Je;Kim, Yong-Woong;Kim, In-Seon;Shim, Jae-Han;Park, Ro-Dong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.195-203
    • /
    • 2006
  • An antagonistic strain, Burkholderia MP-1, showed antimicrobial activity against various filamentous plant pathogenic fungi, yeasts and food borne bacteria (Gram-positive and Gram-negative). The nucleotide sequence of the 16S rRNA gene (1491 pb) of strain MP-1 exhibited close similarity (99-100%) with other Burkholderia 16S rRNA genes. Isolation of the antibiotic substances from culture broth was fractionated by ethyl acetate (EtOAc) solvent and EtOAc-soluble acidic fraction. The antibiotic substances were purified through a silica gel, Sephadex LH-20, ODS column chromatography, and high performance liquid chromatography, respectively. Four active substances were identified as phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid and 4-hydroxyphenylacetate methyl ester by gas chromatographic-mass spectrum analysis. The minimum inhibition of concentration (MIC) of each active compound inhibited the growth of the microorganisms tested at 250 to $2500{\mu}g\;ml^{-1}$. The antimicrobial activity of crude acidic fraction at 1 mg of dry weight per 6 mm paper disc was more effective than authentic standard mixture (four active substances were mixed with the same ratio as acidic fraction) over a wide range of bacterial test.