• Title/Summary/Keyword: mixed forests

Search Result 157, Processing Time 0.024 seconds

Plant Assemblages Along an Altitudinal Gradient in Northwest Himalaya

  • Gupta, Bhupendar;Sharma, Navneet
    • Journal of Forest and Environmental Science
    • /
    • v.31 no.2
    • /
    • pp.91-108
    • /
    • 2015
  • The study investigates herbage communities along the altitudinal gradient in northwest Himalaya and highlights the effect of trees on its understory floristic diversity and phytosociology. The study was conducted in nine forests at three elevations viz., chir pine (Pinus roxburghii), mixed and khair (Acacia catechu) forests at elevation $E_1$ (850-1150 m), chir pine, mixed and ban oak (Quercus leucotrichophora) forests at elevation $E_2$ (1151-1600 m) and ban oak, mixed and chir pine forests at elevation $E_3$ (>1600 m) in a sub-watershed located in Solan district of Himachal Pradesh, India. These were compared grasslands located adjacent to forests. In all, 20 grass, 3 sedge, 2 forb and 4 legume species were recorded in study sites. Jaccard's coefficient of herbage vegetation was highest between chir pine forests and grasslands, and lowest in khair and ban oak forests. TWINSPAN dendrogram of herbage composition exhibited three subtypes with Apluda mutica, Arundinella nepalensis and Dichanthium annulatum as indicator species. Three groups of plant communities were identified on the basis of their moisture requirement. Peak density and basal area of herbage in forests and grasslands occurred by September. Density and basal area of herbage in grasslands at different elevations ranged from 649.6 to $1347.9tillers/m^2$ and 30.0 to $65.7cm^2/m^2$, respectively, while, in forests it varied from 351.2 to $1005.3tillers/m^2$ and 14.9 to $43.9cm^2/m^2$, respectively. Density and basal area of the herbage in plant communities decreased along the elevation. Under trees in forests the density of herbage decreased up to 77% and basal area up to 62% of their respective values in grasslands.

Classification of Forest Cover Types in the Baekdudaegan, South Korea

  • Chung, Sang Hoon;Lee, Sang Tae
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.269-279
    • /
    • 2021
  • This study was carried out to introduce the forest cover types of the Baekdudaegan inhabiting the number of native tree species. In order to understand the vegetation distribution characteristics of the Baekdudaegan, a vegetation survey was conducted on the major 20 mountains of the Baekdudaegan. The vegetation data were collected from 3,959 sample points by the point-centered quarter method. Each mountain was classified into 4-7 forests by using various multivariate statistical methods such as cluster analysis, indicator species analysis, multiple discriminant analysis, and species composition analysis. The forests were classified mainly according to the relative abundance of Quercus mongolica. There was a total of 111 classified forests and these forests were integrated into the following nine forest cover types using the percentage similarity index and by clustering according to vegetation type: 1) Mongolian oak, 2) Mongolian oak and other deciduous, 3) Oaks (Mixed Quercus spp.), 4) Korean red pine, 5) Korean red pine and oaks, 6) ash, 7) mixed mesophytic, 8) subalpine zone coniferous, and 9) miscellaneous forest. Forests grouped within the subalpine zone coniferous and miscellaneous classifications were characterized by similar environmental conditions and those forests that did not fit in any other category, respectively.

Detection of Site Environment and Estimation of Stand Yield in Mixed Forests Using National Forest Inventory (국가산림자원조사를 이용한 혼효림의 입지환경 탐색 및 임분수확량 추정)

  • Seongyeop Jeong;Jongsu Yim;Sunjung Lee;Jungeun Song;Hyokeun Park;JungBin Lee;Kyujin Yeom;Yeongmo Son
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.83-92
    • /
    • 2023
  • This study was established to investigate the site environment of mixed forests in Korea and to estimate the growth and yield of stands using national forest resources inventory data. The growth of mixed forests was derived by applying the Chapman-Richards model with diameter at breast height (DBH), height, and cross-sectional area at breast height (BA), and the yield of mixed forests was derived by applying stepwise regression analysis with factors such as cross-sectional area at breast height, site index (SI), age, and standing tree density per ha. Mixed forests were found to be growing in various locations. By climate zone, more than half of them were distributed in the temperate central region. By altitude, about 62% were distributed at 101-400 m. The fitness indexes (FI) for the growth model of mixed forests, which is the independent variable of stand age, were 0.32 for the DBH estimation, 0.22 for the height estimation, and 0.18 for the basal area at breast height estimation, which were somewhat low. However, considering the graph and residual between the estimated and measured values of the estimation equation, the use of this estimation model is not expected to cause any particular problems. The yield prediction model of mixed forests was derived as follows: Stand volume =-162.6859+6.3434 ∙ BA+9.9214 ∙ SI+0.7271 ∙ Age, which is a step- by-step input of basal area at breast height (BA), site index (SI), and age among several growth factors, and the determination coefficient (R2) of the equation was about 96%. Using our optimal growth and yield prediction model, a makeshift stand yield table was created. This table of mixed forests was also used to derive the rotation of the highest production in volume.

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Vertical Distribution of Foraging Tits in Mixed Species Flocks in Urban Forests

  • Lee, Sang-Don
    • The Korean Journal of Ecology
    • /
    • v.22 no.2
    • /
    • pp.65-68
    • /
    • 1999
  • In December-January of 1996-1997 and 1997-1998, information was gathered about vertical distribution of foraging sites of tits in 34 flocks in coniferous and deciduous forests. There was a significant effect of forest type on the distribution of foraging sites of each species. Habitat was classified into 5 height layers vertically: ground, bushes (usually<1.5 m, up to 3 m), tree layer 1 (up to 1/3 of tree height), tree layer 2 (1/3-2/3 tree height). and tree layer 3 (>2/3 tree height). There were differences among species: great tit (Parus major) foraged mostly on the ground, coal tit (P. ater) and long-tailed tit (Acrocephalus caudatus) - on the highest tree layer, marsh tit (P. palustris) was often seen on bushes, and varied tit (P. varius) - in tree layer 2. Smaller species used upper and outer parts of trees. suggesting that, like in most other similar studies. larger dominant species prevented smaller species from using inner parts of trees.

  • PDF

Occurrence and Distribution of Cellular Slime Molds in Relation to the Coastal Plant Communities of Islands near Inch`on (仁川 近海 島嶼地域의 海岸植物 群落에 따른 細胞性 粘菌의 出現과 分布)

  • Hong, Jeong-Soo;Nam-Kee Chang
    • The Korean Journal of Ecology
    • /
    • v.14 no.4
    • /
    • pp.457-467
    • /
    • 1991
  • Occurrence and distribution of the celluar slime molds in relation to the coastal plant communities of svven islands near inch'on wereinvestigated. as a results, total seven species were isolated from the soils of the coastal plant communities. These are dictyostelium mucoroides, polysphodylium pallidum, dictystelium polycephalum. d. mucoroides was the most commonly found in the coastal plant communities investigated, and was dominant pecularly in the coastal mixed forests, the coastal broad-leaved forests and salt marshes. In the coastal coniferous forest and the coastal dune sand plants, hoeever, p. violaceum was the dominant species. species diversity was relatively was relatively high in the coastal coniferous ferests and the coastal mixed forests. However, agerage number of species isolated from all plant communities was very low,2.8.

  • PDF

Analysis of Forest Image according to Main Tree Species (숲의 주요 수종에 따른 이미지의 규명)

  • Kim, Jin-Sook;Shin, Chang-Sup;Yeoun, Poung-Sik;Park, Suk-Hee;Koo, Wan-Hae
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1519-1527
    • /
    • 2013
  • We have researched the image of different forest species by asking those who use these forests how they feel when enjoying them for their various purposes. We surveyed five different forest areas, these were a pine forest a korean pine forest a cypress forest a broad leafed forest and a mixed forest. We asked 806 people how these forests made them feel and what they thought was the image of these forests. We offered them a choice of 18 pairs of adjectives to describe how they felt. We used the SD Scale and discovered 4 different factors. A feeling of comfort and freshness and a feeling of order and space. There was also a feeling of intimacy with nature. Each forest gave out its own feeling and image. comfort and freshness was felt by those in the pine forest, the korean pine forest, the broad leafed forest and the mixed forest. A Feeling of order and space was felt in the korean pine forest. Intimacy was felt in the pine forest, broad leafed forest and the mixed forest.

Estimation of Carbon Storage Using Mean Biomass Density in Korean Forests

  • Li, Xiaodong;Yi, Myong-Jong;Jeong, Mi-Jeong;Son, Yo-Whan;Jin, Guangze;Han, Sang-Sub
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.673-681
    • /
    • 2010
  • This study examined the biomass data estimated from different allometric models and calculated the mean aboveground biomass, mean belowground biomass and root/shoot ratio values according to the forest types and age classes. These mean values and the forest inventories in 2009 were used to estimate the aboveground and total biomass carbon storage in different forest types (coniferous, deciduous and mixed forests). The aboveground and total biomass carbon storage for all forest types in Korea were 350.201 Tg C and 436.724 Tg C. Over the past 36 years, plantations by reforestation programs have accounted for more than 70% of the observed carbon storage. The carbon storage in Korean forest biomass was 436.724 Tg C, of which 175.154 Tg C for coniferous forests, 126.772 Tg C for deciduous forests and 134.518 Tg C for mixed forests, comprising approximately 1/20 of the total carbon storage of the East Asian countries. The total carbon storage for the whole forest sector in Korea was 1213.122 Tg C, of which 436.724 Tg C is stored in forest biomass if using the ratio of carbon storage in different pools examined from the United States. Such large carbon storage in Korean forests is due mainly to active plantations growth and management practices.

Bird Distribution in Relation to Forest Types in Gwangneung Forest (광릉숲의 임상별 조류의 분포 현황)

  • Kwon, Young-Soo;Park, Sung-Keun;Hwang, Geun-Yeoun;Kim, Mi-Ran
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.2
    • /
    • pp.137-141
    • /
    • 2012
  • This study was conducted from February 2005 to October 2007 to investigate bird distribution at three types of forest (mixed, broadleaf and coniferous) in Gwangneung forest. As a result, more birds used mixed forests than broodleaf and coniferous forest. During forest was opened to public, more birds also frequently used mixed forests. When forest was closed to public, there was no preference among three forest types. We also compared the number of species and individuals between open and restricted area. More species and individuals used restricted area.

Analysing of Forest Types in Chungnam Coastal area Using Multi-Temporal Satellite imagery and ASTER DEM Data (다중시기 위성영상과 ASTER DEM자료를 이용한 충남해안지역의 임상 변화 분석)

  • KIM, Jang-soo;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.69-81
    • /
    • 2012
  • This study analyzed the relationship between the geomorphic factor and changes in forest types of the Chungnam coastal area using ASTER DEM and multi-temporal satellite imagery. The results showed that in case coniferous forests vary by altitudinal segments, reduction rate continuously increased up to 500m, but dropped upon exceeding 550 meters. Next, the variation rate of mixed forests by altitudinal segments decreased from less than 50m. However, the variation rate of mixed forests increased from more than 50m to 700m, but dropped upon exceeding 700m. Lastly, the variation rate of deciduous forests according to altitudinal segments increased at all altitudes. A sharp increase was found in segments of more than 550 meters. With regard to the changes in the distribution area of forest types according to slope aspects, coniferous forests showed a reduction in all slope aspects. The reduction rate was especially higher in northern, northwestern, western and northeastern aspects. Mixed forests manifested a high growth rate in northwestern, northern and western aspects, but slightly decreased in eastern and southeastern aspects. In addition, deciduous forests increased in all slope aspects, but the growth rate was especially high in eastern, southeastern, northeastern and southern aspects.