• Title/Summary/Keyword: mixed finite element

Search Result 314, Processing Time 0.037 seconds

Optimum Design Criteria for Maximum Torque Density & Minimum Current Density of a Line-Start Permanent-Magnet Motor using Response Surface Methodology & Finite Element Method (반응표면법과 유한요소법을 이용한 라인-스타트 영구 자석 전동기의 최대토크밀도와 최소전류밀도을 위한 최적설계)

  • Jang, Soon-Myung;Jun, Myung-Jin;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1055-1056
    • /
    • 2011
  • This paper deals with optimum design criteria for maximum torque density & minimum current density of a single phase line-start permanent-magnet motor (LSPMM) using RSM (Response Surface Methodology) & FEM (Finite Element Method). The focus of this paper is to find a design solution through the comparison of torque density and minimum current density resulting from rotor shape variations. And then, a central composite design (CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

A Finite Element Method for Localized Failure Analysis of Concrete (콘크리트에서 국소화된 파괴해석을 위한 유한요소법)

  • 송하원;김형운;우승민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.233-238
    • /
    • 1999
  • Localized failure analysis of concrete structures can be carried out effectively by modeling fracture process zone of concrete during crack initiation and propagation. But, the analysis techniques are still insufficient for crack modeling because of difficulties in numerical analysis procedure which describe progressive crack. In this paper, a finite element with embedded displacement discontinuity is introduced to remove the difficulties of remeshing for crack propagation in discrete crack model during progressive failure analysis of concrete structures. The performance of this so-called embedded crack approach for concrete failure analysis is verified by several analysis examples. The analysis results show that the embedded crack approach retains mesh size objectivity and can simulate localized failure under mixed mode loading. It can be concluded that the embedded crack approach cab be an effective alternate to the smeared and discrete crack approaches.

  • PDF

Finite Element Analysis of Step-down Piezoelectric Transformer with Various Shape (형태의 변화에 따른 강압용 압전변압기의 유한요소해석)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.697-700
    • /
    • 2003
  • This paper presents design and analysis of step-down piezoelectric transformer for application to AC-adapters. These transformers are consist of rectangular type and disk type multilayered piezoelectric ceramic plate. This piezoelectric transformer operated in third thickness resonance vibration mode. Finite element methode(FEM) was used for analysing transformer. Vibration mode and electric field of piezoelectric transformer were simulated at resonance frequency. As results, rectangular type transformer's output voltage was higher than the disk type. But disk type transformer's current was lagger than rectangular type. These results are assumed that disk type transformer's mixed vibration mode influence transformer's output characteristics. From these results, we expect that disk type piezoelectric transformer is more adoptable than rectangular plate type piezoelectric transformer for AC adapters.

  • PDF

Analysis of Fatigue Life and Fracture Toughness Using Probabilistic Finite Element Method (확률 유한요소해석법을 이용한 피로수명 및 강도해석)

  • 이현우;오세종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1448-1454
    • /
    • 1994
  • Data which gathered and used in the field of fatigue and fracture mechanics have a lot of uncertainties. In this case, those uncertainties will make scatter band in evaluation of fatigue life and fracture toughness. Thus, the probabilistic analysis of these data will be needed. For determining the fatigue life in mixed mode, using crack direction law and fatigue crack growth law, the problem is studied as a constrained life minimization. Stress intensity factor(SIF) is computed by approximate solution table(Ewalds/Wanhill 1984) and 0th order PFEM. The variance of fatigue life and SIF are computed by differentiation of tabulated approximate solution and 1st order PFEM. And these are used for criterion of design values, principal parameter determination and modelling. The problem of center cracked plate is solved for checking the PFEM model which is influenced by various parameters like as initial crack length, final crack length, two fatigue parameters in Paris Equation and applied stress.

The Size Optimization Design of Crane using the Table of Orthogonal Array and Finite Element Analysis (직교배열표와 유한요소해석을 이용한 크레인의 치수최적설계)

  • 홍도관;최석창;안찬우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1471-1474
    • /
    • 2003
  • The correlation between the object function and the design parameter is shown on this paper by using the characteristic function for tile mixed result of the structure analysis. tile buckling analysis and the table of orthogonal array according to the original crane's dimensional change. About the above two object functions, the effective of design change according to the change of design parameters could be estimated. Also, the crane's weight is reduced up to 20.58 percent maintaining the structural stability according to the thickness of plate.

  • PDF

Adaptive Finite Element Analysis of Shock-induced Combustion (충격파를 동반한 연소현상에 관한 적응 격자 유한요소법 해석)

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.444-449
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction front is established if the the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger.

  • PDF

가중함수법에 의한 볼트 체결부 균열의 임계 경사각 결정에 관한 연구

  • Heo, Seong-Pil;Yang, Won-Ho;Jeong, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2344-2352
    • /
    • 2000
  • Mechanical joints such as bolted or riveted joints are widely used in mechanical components. The reliable determination of the stress intensity factors for cracks in bolted joints is needed to evaluate the safety and fatigue life of them. The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions because only the stress analysis of an uncracked model is required. In this paper the mixed-mode stress intensity factors for cracks in bolted joints are obtained by weight function method, in which the coefficients of weight function are determined by finite element analyses for reference loadings. Critical inclined angle that mode I stress intensity factor becomes maximum is determined and the effects of crack length and the magnitude of clearance on critical inclined angle are investigated.

Comparative Numerical Analysis of Homogenized and Discrete-Micromechanics Models for Functionally Graded Materials (기능경사재를 위한 균질화와 이산화-미시역학 모델에 대한 비교 수치해석)

  • Ha, Dae-Yul;Lee, Hong-Woo;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.399-404
    • /
    • 2000
  • Functionally graded materials(FGMs) involve dual-phase graded layers in which two different constituents are mixed continuously and functionally according to a given volume fraction. For the analysis of their thermo-mechanical response, conventional homogenized methods have been widely employed in order to estimate equivalent material properties of the graded layer. However, such overall estimations are insufficient to accurately predict the local behavior. In this paper, we compare the thermo-elastic behaviors predicted by several overall material-property estimation techniques with those obtained by discrete analysis models utilizing the finite element method, for various volume fractions and loading conditions.

  • PDF

Application of Weight Function Method to Elliptical Surface Cracks in Mechanical Joints (기계적 체결부에 존재하는 타원형 표면균열에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Kim, Cheol;Hyun, Cheol-Seung;Ryu, Myung-Hai
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.165-170
    • /
    • 2000
  • The weight function method is an efficient technique to calculate the stress intensity factors for various loading conditions in that only the stress analysis of an uncracked model is required. This paper analyzes the mixed-mode stress intensity factors of surface and deepest points for quarter elliptical surface cracks in mechanical joints by weight function method and the coefficients included in weight function are determined by finite element analyses for reference loadings. Results for the different number of terms in weight function are presented.

  • PDF

Direct Numerical Simulation of Flow Characteristics of the Fluid Laden with Many Particles (입자가 포함된 유체의 유동특성에 대한 직접수치해석)

  • Cho, Sang-Ho;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1327-1334
    • /
    • 2003
  • Flow characteristics of the fluid laden with many particles in the two-dimensional channel are investigated using the Navier-Stokes equations coupled with the equation of motion of particles by direct numerical simulation. A four-step fractional step method with Crank-Nicolson scheme and ALE technique is used for P2P1 mixed finite element method. The motion and distribution of particles in the fluid is virtually described as a result of direct numerical simulation and the increase of viscosity is compared with theoretical equations. The effect of channel height on the relative viscosity and the tubular pinch effect are discussed.