• Title/Summary/Keyword: mitochondrial membrane permeability

Search Result 41, Processing Time 0.021 seconds

Effects of Harmaline and Harmalol on Dopamine Quinone-induced Brain Mitochondrial Dysfunction

  • Han, Eun-Sook;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.152-158
    • /
    • 2002
  • The present study elucidated the effect of $\beta$-carbolines (harmaline and harmalol) on brain mitochondlial dysfunction caused by the tyrosinase-induced oxidation of dopamine. Harmaline, harmalol and antioxidant enzymes (SOD and catalase) attenuated the dopamine-induced alteration of membrane potential, cytochrome c release and thiol oxidation in mitochondria. In contrast, antioxidant enzymes failed to reverse mitochondrial dysfunction induced by dopmnine plus tyrosinase. $\beta$-Carbolines decreased the damaging effect of dopamine plus tyrosinase against mitochondria, except no effect of harmalol on thiol oxidation. Antioxidant enzymes decreased the melanin formation from dopamine in the reaction mixture containing mitochondria but did not reduce the formation of dopamine quinone caused by tyrosinase. Both harmalol and harmaline inhibited the formation of reactive quinone and melanin. Harmalol being more effective for quinone formation and vise versa. The results indicate that compared to MAO-induced dopamine oxidation, the toxic effect of dopamine in the presence of tyrosinase against mitochondria may be accomplished by the dopamine quinone and toxic substances other than reactive oxygen species. $\beta$-Carbolines may decrease the dopamine plus tyrosinase-induced brain mitochondrial dysfunction by inhibition of the formation of reactive quinone and the change in membrane permeability.

Anticancer and Cytotoxic Effect of Verotoxin 1 on Colon Cancer Cell Line

  • Mustafa Attiyah, Hadid;Mohammad M.F., Al-Halbosiy;Abdulwahid B., Al-Shaibani
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.387-394
    • /
    • 2022
  • Verotoxin-1 (VT-1) or Shiga-like toxin 1 (Stx-1) is produced by enterohemorrhagic Escherichia coli (EHEC) and is an AB5 holotoxin with a strong inhibitor of protein synthesis. VT-1 is a type 2 ribosome-inactivating protein (RIP) that has been shown to have cytotoxic and anticancer potential by inducing necrosis, apoptosis, and cell cycle arrest, making it a promising antitumor candidate. Here, we tested the cytotoxicity of VT-1 on CaCo2 and NCM425 cell lines and the results showed that VT-1 was more potent on CaCo2. Morphological changes were also evaluated on the cellular level and the results showed that VT-1 caused a decrease in viable cell count, altered cell membrane permeability, and an increase in total nuclear intensity. On the other hand, VT-1 displayed a lesser impact on mitochondrial membrane potential (MMP) and cytochrome c release. On the expression of caspases 3 and 9, VT-1 exhibited an insignificant effect on both which alongside the mitochondrial membrane potential (MMP) and cytochrome c results, might indicate that CaCo2 suffered from the necrosis process as a mechanism of cell death after exposure to VT-1.

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

Diazoxide Suppresses Mitochondria-dependent Apoptotic Signaling in Endothelial Cells Exposed to High Glucose Media (고농도 당에 노출된 혈관 내피세포에서 미토콘드리아 의존성 세포사멸 기작 활성화에 미치는 diazoxide의 억제 효과)

  • Jung, Hyun Ju;Kim, Tae Hyun;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.29 no.12
    • /
    • pp.1393-1400
    • /
    • 2019
  • In the present study, we examined the effect of mitochondrial K+ channel opener diazoxide on the mitochondria-dependent apoptotic signaling in endothelial cells exposed to high glucose (HG) media. Endothelial cells derived from human umbilical veins were exposed to HG media containing 30 mM glucose, and the degree of apoptotic cell death associated with activation of the mitochondria-dependent apoptotic signaling pathway was determined. Exposure to HG media was seen to enhance apoptotic cell death in a time-dependent manner. In these cells, activation of caspases 3, 8, and 9 was observed, and while caspase-3 and -9 inhibitors suppressed the HG-induced apoptotic cell death, a caspase-8 inhibitor did not. The HG-treated cells exhibited disruption of mitochondrial membrane potential, formation of permeability transition pores, and cytosolic release of cytochrome c. Subsequently, diazoxide was seen to attenuate the HG-induced apoptotic cell death; caspase-9 activation was suppressed but caspase 8 was not. Diazoxide also suppressed the depolarization of mitochondrial membrane potential, the formation of mitochondrial permeability transition pores, and the release of cytochrome c. These effects were significantly inhibited by 5-hydroxydecanoate, a selective blocker of ATP-sensitive K+ channels (KATP). The present results demonstrate that diazoxide exhibits a beneficial effect to ameliorate HG-induced endothelial cell apoptosis. Opening the KATP could help preserve the functional integrity of mitochondria and provide an underlying mechanism to suppress HG-triggered apoptotic signaling.

Protective Effects of Palmul-tang on Hypoxia-induced Apoptosis in H9c2 Cardiomyoblast Cells (팔물탕이 저산소증에 의한 배양심근세포고사에 미치는 영향)

  • 임은경;신선호
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.67-76
    • /
    • 2004
  • Objectives : This study was designed to investigate the protective mechanisms of Palmul-tang on hypoxia-induced cytotoxicity in H9c2 cardiomyoblast cells. Methods : In this study, we used H9c2 cells. Cells were subjected to hypoxia in the absence and presence of $1000\mu\textrm{g}/ml$ Palmul-tang for 24 hrs. Cells were treated with various concentrations of Palmul-tang for 24 hrs. Cell viability was measured by MTT assay. Hypoxia markedly decreased the viability of H9c2 cells, which was characterized with apparent apoptotic features such as chromatin condensation as well as fragmentation of genomic DNA and nuclei. Results : Palmul-tang significantly reduced hypoxia-induced cell death and apoptotic characteristics. Also, Palmul-tang prevented mitochondrial dysfunction including the disruption of mitochondrial membrane permeability transition (MPT) and an increase in expression of apoptogenic Bcl-2 proteins in hypoxia-H9c2 cells. Conclusions; This study suggests that the protective effects of Palmul-tang against hypoxic damages may be mediated by the modulation of Bcl-2, Bax expression.

  • PDF

Induction of Apoptosis by Aqueous Extract of Cordyceps militaris Through Activation of Caspases and Inactivation of Akt in Human Breast Cancer MDA-MB-231 Cells

  • Jin, Cheng-Yun;Kim, Gi-Young;Choi, Yung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1997-2003
    • /
    • 2008
  • Cordyceps militaris is well known as a traditional medicinal mushroom and has been shown to exhibit immunostimulatory and anticancer activities. In this study, we investigated the apoptosis induced by an aqueous extract of C. militaris (AECM) via the activation of caspases and altered mitochondrial membrane permeability in human breast cancer MDA-MB-231 cells. Exposure to AECM induced apoptosis, as demonstrated by a quantitative analysis of nuclear morphological change and a flow cytometric analysis. AECM increased hyperpolarization of mitochondrial membrane potential and promoted the activation of caspases. Both the cytotoxic effect and apoptotic characteristics induced by AECM treatment were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role of caspase-3 in the observed cytotoxic effect. AECM-induced apoptosis was associated with the inhibition of Akt activation in a time-dependent manner, and pretreatment with LY294002, a PI3K/Akt inhibitor, significantly increased AECM-induced apoptosis. The results indicated that AECM-induced apoptosis may relate to the activation of caspase-3 and mitochondria dysfunctions that correlate with the inactivation of Akt.

Lonicera japonica inhibited the oxidative Stress induced by the heavy metal (중금속 유도 산화적 스트레스에 대한 금은화의 세포 보호 효과)

  • Yeom, Seung-Hee;Bak, Seon Been;Park, Sun-Dong;Park, Kwang-Il;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.30 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • Objectives : Lonicera japonica is known for anti-inflammation and antibiotic effect in Korean medicine. This study aimed for investigating the cytoprotective effect of Lonicera japonica extract (LJE) for HepG2 cells against arachidonic acid (AA)+iron-induced oxidative stress. Methods : The effect of LJE on cell viability was assessed by MTT assay. ROS assay was selected to assess antioxidant effect of LJE. To assess LJE's effect on mitochondrial function, flow cytometric analysis was operated. And immunoblot analysis was used to establish the underlying mechanism of LJE. Results : LJE protected HepG2 cells against AA+iron-induced oxidative stress by phosphorylation of liver kinase B1 and blocked the decline of procaspase 3. Also, LJE preserved the mitochondrial membrane permeability induced by AA+iron. Conclusion : LJE protected the hepatocyte from AA+iron-induced oxidative stress by activation of LKB1 by the preservation of mitochondrial functions.

The 18-kDa Translocator Protein Inhibits Vascular Cell Adhesion Molecule-1 Expression via Inhibition of Mitochondrial Reactive Oxygen Species

  • Joo, Hee Kyoung;Lee, Yu Ran;Kang, Gun;Choi, Sunga;Kim, Cuk-Seong;Ryoo, Sungwoo;Park, Jin Bong;Jeon, Byeong Hwa
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1064-1070
    • /
    • 2015
  • Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10-100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO ($0.1-0.5{\mu}m$), a specific mitochondrial antioxidants, and cyclosporin A ($1-5{\mu}m$), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam ($1-50{\mu}m$), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.

Condurango (Gonolobus condurango) Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro -CE-treatment on HeLa: a ROS-dependent mechanism-

  • Bishayee, Kausik;Mondal, Jesmin;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.32-41
    • /
    • 2015
  • Objectives: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs). Results: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha ($TNF-{\alpha}$) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

The Protective Effects of Seokchangpowonji-san on $H_2O_2$-Mediated Cell Death of Neuro 2A as an Alzheimer Model System (산화적 손상에 의한 Neuro 2A 치매모델에서 석창포원지산의 방어효과)

  • Yim Jun-Mo;Lee Min-Goo;Yun Jong-Min;Lee In;Moon Byung-Soon
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.161-173
    • /
    • 2005
  • Objective : The water extract of Seokchangpowonji-san (SWS) has traditionally been used for treatment of dementia in oriental medicine. However, little is known about the mechanism by which the water extract of SWS rescues cells from neurodegenerative disease such as Alzheimer's disease. Methods & Results: This study was designed to investigate the protective mechanisms of SWS on $\beta-amyloid$ or $H_2O_2$-induced$ cytotoxicity in neuro 2A cells. $H_2O_2$ markedly decreased the viability of neuro 2A cells, which was characterized by apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the water extract of SWS significantly reduced $H_2O_2-induced$ cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Also, the. extract prevented the mitochondrial dysfunction including the disruption of mitochondria membrane permeability transition (MPT) and the modulation in expression of Bcl-2 family proteins in $H_2O_2­treated$ neuro 2A cells. Furthermore, pretreatment with SWS inhibited the activation of caspase-3, and in turn, degradation of ICAD/DFF45 was completely abolished in $H_2O_2-treated$ cells. Conclusion: Taken together, the data suggest that the protective effects of the water extract of SWS against $\beta-amyloid$ induced oxidative injuries may be achieved through modulation of mitochondrial dysfunction.

  • PDF