• Title/Summary/Keyword: mitochondrial marker

Search Result 131, Processing Time 0.033 seconds

Phylogeny of the subfamily Salmoninae distributed in Korea based upon nucleotide sequences of mitochondrial ribosomal RNA genes (미토콘드리아 ribosomal RNA 유전자 염기서열분석에 의한 한국산 연어아과 어류의 유전적 계통도)

  • LEE Heui-Jung;PARK Jung-Youn;LEE Jeong-Ho;MIN Kwang-Sik;JEON Im Gi;YOO Mi-Ae;LEE Won-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.2
    • /
    • pp.103-109
    • /
    • 2000
  • Complete senuences of the mitochondrial rRNA Benes were determined among six salmonines in Korean Waters (Brachpmystax lenok, Onoorhpchus keta, O. masou mason, O. mason ishikawae, O. mykiss, and albino mutant of O. mykiss). The purposes of this study were to provide the basic information on levels of mtDNA polymorphism among these species for genetic characterization; discuss phylogentic relationships among three Oncorhynchus sepecies; demonstrate the utility of rRNA gene sequence data as a genetic marker for disringuishinf among Korean salmonines. PCR/direct sequencing data indicated the following consistent results; 1) 12S rRNA genes was 945 bases long in Oncorhynchus species, and 946 bases in B. lenot including one insertion. 2) Of sequence variation in mitochondrial rRNA regions, transitional substitutions were superior to transversion. 3) The significant differences were not shown in the intraspecific variation values in these gene regions. The percentage sequence divergence values were ranged from $0.066 to 0.212{\%}$. 4) The interspecific divergences were greater than the intraspecific variation. Nevertheless, ribosomal RMh genes were more conserved among species than the other mitochondrial genes, and they showed potentiality as an intergenic marker for systematics. In addition, phylogenetic trees, constructed from this data, supported that cherry salmon was closer to chum salmon than to rainbow trout, and that lenok was most distantly related species in six salmonid species.

  • PDF

Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages

  • Hwang, Won-Sang;Park, Seong-Hoon;Kim, Hyun-Seok;Kang, Hong-Jun;Kim, Min-Ju;Oh, Soo-Jin;Park, Jae-Bong;Kim, Jae-Bong;Kim, Sung-Chan;Lee, Jae-Yong
    • Nutrition Research and Practice
    • /
    • v.1 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid at ($200{\mu}M$) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered $SA-{\beta}-gal$ positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of $20{\mu}M$ of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS.

Genetic Relationships of Sandfish (Arctoscopus japonicas) from Five Different Areas of Korea and Japan Based on Mitochondrial DNA and Microsatellite Analyses (Mitochondrial DNA와 microsatellite marker 분석을 통한 한국과 일본에 서식하는 5 지역의 도루묵(Arctoscopus japonicas)에 대한 유전학적 유연관계 분석)

  • Kim, Eun-Mi;Kang, Hyun-Sook;Kang, Jung-Ha;Kim, Dong-Gyun;An, Cheul Min;Lee, Hae Won;Park, Jung Youn
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1204-1213
    • /
    • 2015
  • A comprehensive analysis of the population structure of the sandfish (Arctoscopus japonicas), the most abundant fishery resource in the East Sea of Korea, has not been carried out, despite its importance in Korea. The present study examined the genetic diversity and differences between five populations (two Japanese and three Korean populations) of A. japonicas captured in the East Sea using both the 401 bp sequence of mitochondrial DNA (mtDNA, cytochrome b) and five microsatellite DNA (msDNA) markers. The results of the analysis using the Cyt b sequence revealed 27 haplotypes. Based on msDNA variations, the estimated expected heterozygosity (HE) in each population ranged from 0.68 (Gampo, Korea) to 0.7765 (Erimo, Japan). Pairwise FST and AMOVA tests using both the Cyt b sequence and msDNA data pointed to significant differences between the Korean and Japanese populations (mtDNA; FST=0.2648, p<0.05, msDNA; FST=0.0814, p<0.05). These results were similar to the results of UPGMA, PCA, and structure analysis. In these analyses, the five populations were assigned to two groups (Korean populations and Japanese populations). These results shed light on the genetic diversity and relationships of A. japonicas and contribute to research on the evaluation, conservation, and utilization of Korean A. japonicas as genetic resources.

Effects of Dietary Rice Bran Oil on Mitochondrial Respiration in M2-induced Bone Marrow-derived Macrophages (현미유가 생쥐의 골수로부터 M2로 유도한 대식세포의 미토콘드리아 호흡에 미치는 영향)

  • Lee, Sojung;Kim, Wooki
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2018
  • Previous studies have suggested that rice bran oil (RBO), an edible oil from the byproducts of rice milling, has anti-inflammatory effects in inflammation inducing macrophages, known as M1 subsets. Yet the effects of RBO on the counterpart M2 subsets, the "healing" macrophages, were poorly investigated to date. In this regard, recent studies on the molecular/cellular anti-inflammatory mechanisms of dietary components have demonstrated that mitochondrial respiration contributes to macrophage functioning. Therefore, the current study examined whether RBO regulates cytokine secretion by modulating mitochondrial metabolism in wound healing M2 subsets. Palm oil (PO), enriched with medium-chain fatty acids, served as a positive control. C57BL/6 mice were fed a diet containing either corn oil (CO), PO or RBO for 4 weeks, followed by purification of bone marrow-derived macrophages (BMDM) from their tibias and femurs. Cells were further polarized to M2-BMDM, and the expression of M2 marker (CD206) on cellular surfaces were not affected by dietary intervention. In addition, the secretion of anti-inflammatory cytokine (IL-10) in the culture supernatant was not affected by dietary lipids. Oxygen consumption rate, the indicator of mitochondrial respiration in M2-BMDM was not regulated by RBO intervention and PO treatment. Taken together, this study imply that RBO did not intervene both the regulation of inflammatory responses and mitochondrial respiration in M2 macrophages.

Genetic Variation of Korean Masu Salmon (Oncorhynchus masou) Populations Inferred from Mitochondrial DNA Sequence Analysis

  • Yoon, Moon-Geun;Jin, Hyung-Joo;Seong, Ki-Baek;Jin, Deuk-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2008
  • We analyzed the nucleotide sequences of about 500 bp of the mitochondrial NADH dehydrogenase subunit 3 (ND3) gene to estimate the genetic variation of Korean masu salmon (Oncorhynchus masou) populations. DNA samples were collected from 104 river-only specimens and 52 anadromous specimens from three hatcheries and one river. There are no records of artificial release into the river. We amplified the ND3 gene by polymerase chain reaction, targeting areas that included parts of the cytochrome oxidase III gene and the NADH dehydrogenase subunit 4L gene, and defined 14 haplotypes based on 12 variable nucleotide sites in the examined region. Among the haplotypes, ten were specific to river-only specimens within hatchery populations. Haplotype diversity of river-only populations in hatcheries was higher than that of anadromous and wild populations. Pairwise population $F_{ST}$ estimates and neighbor-joining tree analyses inferred that anadromous and river-only populations were distinct. These results suggest that sequence polymorphism in the ND3 region may be a useful marker for analyzing the genetic variation and population structure of masu salmon.

Is Mitochondrial DNA Copy Number Associated with Clinical Characteristics and Prognosis in Gastric Cancer?

  • Lee, Hyunsu;Lee, Jae-Ho;Kim, Dong-Choon;Hwang, IlSeon;Kang, Yu-Na;Gwon, Gi-Jeong;Choi, In-Jang;Kim, Shin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.87-90
    • /
    • 2015
  • Alterations in mitochondrial DNA (mtDNA) have been studied in various cancers. However, the clinical value of mtDNA copy number (mtCN) alterations in gastric cancer (GC) is poorly understood. In the present study, we investigated whether alterations in mtCNs might be associated with clinicopathological parameters in GC cases. mtCN was measured in 109 patients with GC by quantitative real-time PCR. Then, correlations with clinicopathological characteristics were analyzed. mtCN was elevated in 64.2% of GC tissues compared with paired, adjacent, non-cancerous tissue. However, the observed alterations in mtCN were not associated with any clinicopathological characteristics, including age, gender, TN stage, Lauren classification, lymph node metastasis, and depth of invasion. Moreover, Kaplan-Meier survival curves revealed that mtCN was not significantly associated with the survival of GC patients. In this study, we demonstrated that mtCN was not a significant marker for predicting clinical characteristics or prognosis in GC.

General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics

  • Hwang, Ui-Wook;Kim, Won
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.4
    • /
    • pp.215-228
    • /
    • 1999
  • To choose one or more appropriate molecular markers or gene regions for resolving a particular systematic question among the organisms at a certain categorical level is still a very difficult process. The primary goal of this review, therefore, is to provide a theoretical information in choosing one or more molecular markers or gene regions by illustrating general properties and phylogenetic utilities of nuclear ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) that have been most commonly used for phylogenetic researches. The highly conserved molecular markers and/or gene regions are useful for investigating phylogenetic relationships at higher categorical levels (deep branches of evolutionary history). On the other hand, the hypervariable molecular markers and/or gene regions are useful for elucidating phylogenetic relationships at lower categorical levels (recently diverged branches). In summary, different selective forces have led to the evolution of various molecular markers or gene regions with varying degrees of sequence conservation. Thus, appropriate molecular markers or gene regions should be chosen with even greater caution to deduce true phylogenetic relationships over a broad taxonomic spectrum.

  • PDF

Mitochondrial Location of Severe Acute Respiratory Syndrome Coronavirus 3b Protein

  • Yuan, Xiaoling;Shan, Yajun;Yao, Zhenyu;Li, Jianyong;Zhao, Zhenhu;Chen, Jiapei;Cong, Yuwen
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.186-191
    • /
    • 2006
  • Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondriaspecific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.

Association of mitochondrial haplogroup F with physical performance in Korean population

  • Hwang, In Wook;Kim, Kicheol;Choi, Eun Ji;Jin, Han Jun
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.11.1-11.7
    • /
    • 2019
  • Athletic performance is a complex multifactorial trait involving genetic and environmental factors. The heritability of an athlete status was reported to be about 70% in a twin study, and at least 155 genetic markers are known to be related with athlete status. Mitochondrial DNA (mtDNA) encodes essential proteins for oxidative phosphorylation, which is related to aerobic capacity. Thus, mtDNA is a candidate marker for determining physical performance. Recent studies have suggested that polymorphisms of mtDNA are associated with athlete status and/or physical performance in various populations. Therefore, we analyzed mtDNA haplogroups to assess their association with the physical performance of Korean population. The 20 mtDNA haplogroups were determined using the SNaPshot assay. Our result showed a significant association of the haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval, 1.094 to 8.464; p = 0.012). Athletes with haplogroup F ($60.64{\pm}3.04$) also demonstrated a higher Sargent jump than athletes with other haplogroups ($54.28{\pm}1.23$) (p = 0.041). Thus, our data imply that haplogroup F may play a crucial role in the physical performance of Korean athletes. Functional studies with larger sample sizes are necessary to further substantiate these findings.

DNA markers in chicken for breed discrimination (닭에서 품종 확인을 위한 DNA 마커에 관한 고찰)

  • Hoque, Md. Rashedul;Lee, Seung-Hwan;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.211-217
    • /
    • 2012
  • There is an emerging interest in using DNA markers for breed identification in animals. This article reviews the breed identification markers in chicken, mainly developed in Chungnam National University, with particular emphasis on the mitochondrial DNA markers and the nuclear DNA markers including the SNPs in MHC region and the plumage color related MC1R markers. This information would be very useful for an appropriate conservation breeding program as well as for the establishment of molecular markers for chicken breed identifications.