DOI QR코드

DOI QR Code

Association of mitochondrial haplogroup F with physical performance in Korean population

  • Hwang, In Wook (Department of Biological Sciences, College of Natural Science, Dankook University) ;
  • Kim, Kicheol (Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco) ;
  • Choi, Eun Ji (Department of Biological Sciences, College of Natural Science, Dankook University) ;
  • Jin, Han Jun (Department of Biological Sciences, College of Natural Science, Dankook University)
  • Received : 2019.01.11
  • Accepted : 2019.03.20
  • Published : 2019.03.31

Abstract

Athletic performance is a complex multifactorial trait involving genetic and environmental factors. The heritability of an athlete status was reported to be about 70% in a twin study, and at least 155 genetic markers are known to be related with athlete status. Mitochondrial DNA (mtDNA) encodes essential proteins for oxidative phosphorylation, which is related to aerobic capacity. Thus, mtDNA is a candidate marker for determining physical performance. Recent studies have suggested that polymorphisms of mtDNA are associated with athlete status and/or physical performance in various populations. Therefore, we analyzed mtDNA haplogroups to assess their association with the physical performance of Korean population. The 20 mtDNA haplogroups were determined using the SNaPshot assay. Our result showed a significant association of the haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval, 1.094 to 8.464; p = 0.012). Athletes with haplogroup F ($60.64{\pm}3.04$) also demonstrated a higher Sargent jump than athletes with other haplogroups ($54.28{\pm}1.23$) (p = 0.041). Thus, our data imply that haplogroup F may play a crucial role in the physical performance of Korean athletes. Functional studies with larger sample sizes are necessary to further substantiate these findings.

Keywords

References

  1. Fuku N, Mikami E, Tanaka M. Association of mitochondrial DNA polymorphisms and/or haplogroups with elite Japanese athlete status. J Phys Fit Sports Med 2013;2:17-27. https://doi.org/10.7600/jpfsm.2.17
  2. Ahmetov, II, Egorova ES, Gabdrakhmanova LJ, Fedotovskaya ON. Genes and athletic performance: an update. Med Sport Sci 2016;61:41-54. https://doi.org/10.1159/000445240
  3. De Moor MH, Spector TD, Cherkas LF, Falchi M, Hottenga JJ, Boomsma DI, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet 2007;10:812-820. https://doi.org/10.1375/twin.10.6.812
  4. Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, et al. Human gene for physical performance. Nature 1998;393:221-222. https://doi.org/10.1038/30374
  5. Scanavini D, Bernardi F, Castoldi E, Conconi F, Mazzoni G. Increased frequency of the homozygous II ACE genotype in Italian Olympic endurance athletes. Eur J Hum Genet 2002;10:576-577. https://doi.org/10.1038/sj.ejhg.5200852
  6. Znazen H, Mejri A, Touhami I, Chtara M, Siala H, Le Gallais D, et al. Genetic advantageous predisposition of angiotensin converting enzyme id polymorphism in Tunisian athletes. J Sports Med Phys Fitness 2016;56:724-730.
  7. Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 2003;73:627-631. https://doi.org/10.1086/377590
  8. Guth LM, Roth SM. Genetic influence on athletic performance. Curr Opin Pediatr 2013;25:653-658. https://doi.org/10.1097/MOP.0b013e3283659087
  9. Mikami E, Fuku N, Murakami H, Tsuchie H, Takahashi H, Ohiwa N, et al. ACTN3 R577X genotype is associated with sprinting in elite Japanese athletes. Int J Sports Med 2014;35:172-177. https://doi.org/10.1055/s-0033-1347171
  10. Pasqua LA, Bueno S, Artioli GG, Lancha AH Jr, Matsuda M, Marquezini MV, et al. Influence of ACTN3 R577X polymorphism on ventilatory thresholds related to endurance performance. J Sports Sci 2016;34:163-170. https://doi.org/10.1080/02640414.2015.1040823
  11. Castro MG, Terrados N, Reguero JR, Alvarez V, Coto E. Mitochondrial haplogroup T is negatively associated with the status of elite endurance athlete. Mitochondrion 2007;7:354-357. https://doi.org/10.1016/j.mito.2007.06.002
  12. Nogales-Gadea G, Pinos T, Ruiz JR, Marzo PF, Fiuza-Luces C, Lopez-Gallardo E, et al. Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion 2011;11:905-908. https://doi.org/10.1016/j.mito.2011.08.002
  13. Mikami E, Fuku N, Takahashi H, Ohiwa N, Pitsiladis YP, Higuchi M, et al. Polymorphisms in the control region of mitochondrial DNA associated with elite Japanese athlete status. Scand J Med Sci Sports 2013;23:593-599. https://doi.org/10.1111/j.1600-0838.2011.01424.x
  14. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457-465. https://doi.org/10.1038/290457a0
  15. Olivo PD, Van de Walle MJ, Laipis PJ, Hauswirth WW. Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature 1983;306:400-402. https://doi.org/10.1038/306400a0
  16. Feng J, Zhang J, Liu M, Wan G, Qi K, Zheng C, et al. Association of mtDNA haplogroup F with healthy longevity in the female Chuang population, China. Exp Gerontol 2011;46:987-993. https://doi.org/10.1016/j.exger.2011.09.001
  17. Kim KC, Jin HJ, Kim W. Mitochondrial haplogroup B is negatively associated with elite Korean endurance athlete status. Genes Genomics 2012;34:569-573. https://doi.org/10.1007/s13258-012-0037-5
  18. Fuku N, Park KS, Yamada Y, Nishigaki Y, Cho YM, Matsuo H, et al. Mitochondrial haplogroup N9a confers resistance against type 2 diabetes in Asians. Am J Hum Genet 2007;80:407-415. https://doi.org/10.1086/512202
  19. Anglin RE, Mazurek MF, Tarnopolsky MA, Rosebush PI. The mitochondrial genome and psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 2012;159B:749-759. https://doi.org/10.1002/ajmg.b.32086
  20. Maruszak A, Adamczyk JG, Siewierski M, Sozanski H, Gajewski A, Zekanowski C. Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scand J Med Sci Sports 2014;24:311-318. https://doi.org/10.1111/sms.12012
  21. Tamura Y, Watada H, Tanaka Y, Daimaru N, Nomiyama T, Sakuraba K, et al. Preliminary report: mitochondrial DNA 5178 polymorphism in male elite Japanese endurance runners. Metabolism 2010;59:62-63. https://doi.org/10.1016/j.metabol.2009.07.005
  22. Fuku N, Murakami H, Iemitsu M, Sanada K, Tanaka M, Miyachi M. Mitochondrial macrohaplogroup associated with muscle power in healthy adults. Int J Sports Med 2012;33:410-414. https://doi.org/10.1055/s-0031-1301317
  23. Lesage R, Simoneau JA, Jobin J, Leblanc J, Bouchard C. Familial resemblance in maximal heart rate, blood lactate and aerobic power. Hum Hered 1985;35:182-189. https://doi.org/10.1159/000153540
  24. Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985) 1999;87:1003-1008. https://doi.org/10.1152/jappl.1999.87.3.1003
  25. Niemi AK, Majamaa K. Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 2005;13:965-969. https://doi.org/10.1038/sj.ejhg.5201438
  26. Scott RA, Fuku N, Onywera VO, Boit M, Wilson RH, Tanaka M, et al. Mitochondrial haplogroups associated with elite Kenyan athlete status. Med Sci Sports Exerc 2009;41:123-128.
  27. Mikami E, Fuku N, Takahashi H, Ohiwa N, Scott RA, Pitsiladis YP, et al. Mitochondrial haplogroups associated with elite Japanese athlete status. Br J Sports Med 2011;45:1179-1183. https://doi.org/10.1136/bjsm.2010.072371
  28. Hong SB, Kim KC, Kim W. Mitochondrial DNA haplogroups and homogeneity in the Korean population. Genes Genomics 2014;36:583-590. https://doi.org/10.1007/s13258-014-0194-9
  29. Rosa A, Fonseca BV, Krug T, Manso H, Gouveia L, Albergaria I, et al. Mitochondrial haplogroup H1 is protective for ischemic stroke in Portuguese patients. BMC Med Genet 2008;9:57. https://doi.org/10.1186/1471-2350-9-57
  30. Kim W, Yoo TK, Shin DJ, Rho HW, Jin HJ, Kim ET, et al. Mitochondrial DNA haplogroup analysis reveals no association between the common genetic lineages and prostate cancer in the Korean population. PLoS One 2008;3:e2211. https://doi.org/10.1371/journal.pone.0002211
  31. Yu D, Jia X, Zhang AM, Li S, Zou Y, Zhang Q, et al. Mitochondrial DNA sequence variation and haplogroup distribution in Chinese patients with LHON and m.14484T>C. PLoS One 2010;5:e13426. https://doi.org/10.1371/journal.pone.0013426
  32. Ji F, Sharpley MS, Derbeneva O, Alves LS, Qian P, Wang Y, et al. Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc Natl Acad Sci USA 2012;109:7391-7396. https://doi.org/10.1073/pnas.1202484109
  33. Wu CC, Chiu YH, Chen PJ, Hsu CJ. Prevalence and clinical features of the mitochondrial m.1555A>G mutation in Taiwanese patients with idiopathic sensorineural hearing loss and association of haplogroup F with low penetrance in three families. Ear Hear 2007;28:332-342. https://doi.org/10.1097/AUD.0b013e318047941e
  34. Ji Y, Zhang AM, Jia X, Zhang YP, Xiao X, Li S, et al. Mitochondrial DNA haplogroups M7b1'2 and M8a affect clinical expression of leber hereditary optic neuropathy in Chinese families with the m.11778G-->a mutation. Am J Hum Genet 2008;83:760-768. https://doi.org/10.1016/j.ajhg.2008.11.002
  35. Sargent LW. Some observations on the Sargent test of neuromuscular efficiency. Am Phys Educ Rev 1924;29:47-56. https://doi.org/10.1080/23267224.1924.10652218
  36. Lannergren J, Westerblad H, Bruton JD. Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic contractions. J Muscle Res Cell Motil 2001;22:265-275. https://doi.org/10.1023/A:1012227009544
  37. Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, et al. Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2006;2:e128. https://doi.org/10.1371/journal.pgen.0020128
  38. Suresh K, Chandrashekara S. Sample size estimation and power analysis for clinical research studies. J Hum Reprod Sci 2012;5:7-13. https://doi.org/10.4103/0974-1208.97779