• Title/Summary/Keyword: mitochondrial injury

Search Result 104, Processing Time 0.022 seconds

Mitochondrial fatty acid metabolism in acute kidney injury

  • Jang, Hee-Seong;Padanilam, Babu J.
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2018
  • Mitochondrial injury in renal tubule has been recognized as a major contributor in acute kidney injury (AKI) pathogenesis. Ischemic insult, nephrotoxin, endotoxin and contrast medium destroy mitochondrial structure and function as well as their biogenesis and dynamics, especially in renal proximal tubule, to elicit ATP depletion. Mitochondrial fatty acid ${\beta}$-oxidation (FAO) is the preferred source of ATP in the kidney, and its impairment is a critical factor in AKI pathogenesis. This review explores current knowledge of mitochondrial dysfunction and energy depletion in AKI and prospective views on developing therapeutic strategies targeting mitochondrial dysfunction in AKI.

Comprehensive overview of the role of mitochondrial dysfunction in the pathogenesis of acute kidney ischemia-reperfusion injury: a narrative review

  • Min-Ji Kim;Chang Joo Oh;Chang-Won Hong;Jae-Han Jeon
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.2
    • /
    • pp.61-73
    • /
    • 2024
  • Acute kidney ischemia-reperfusion (IR) injury is a life-threatening condition that predisposes individuals to chronic kidney disease. Since the kidney is one of the most energy-demanding organs in the human body and mitochondria are the powerhouse of cells, mitochondrial dysfunction plays a central role in the pathogenesis of IR-induced acute kidney injury. Mitochondrial dysfunction causes a reduction in adenosine triphosphate production, loss of mitochondrial dynamics (represented by persistent fragmentation), and impaired mitophagy. Furthermore, the pathological accumulation of succinate resulting from fumarate reduction under oxygen deprivation (ischemia) in the reverse flux of the Krebs cycle can eventually lead to a burst of reactive oxygen species driven by reverse electron transfer during the reperfusion phase. Accumulating evidence indicates that improving mitochondrial function, biogenesis, and dynamics, and normalizing metabolic reprogramming within the mitochondria have the potential to preserve kidney function during IR injury and prevent progression to chronic kidney disease. In this review, we summarize recent advances in understanding the detrimental role of metabolic reprogramming and mitochondrial dysfunction in IR injury and explore potential therapeutic strategies for treating kidney IR injury.

Effects of Albizia julibrissin Durazz through Suppression of Mitochondrial Fission and Apoptosis in Cisplatin-induced Acute Kidney Injury

  • Hui-Ju Lee;Kyung-Hyun Kim;Yae-Ji Kim;Sung-Pil Cho;Geum-Lan Hong;Ju-Young Jung
    • Natural Product Sciences
    • /
    • v.28 no.4
    • /
    • pp.194-200
    • /
    • 2022
  • Albizia julibrissin Durazz. (AJ; family Minosaceae) is widely distributed worldwide, and its stem bark has been used as a traditional herbal medicine. Acute kidney injury (AKI) is a clinical syndrome that results in sudden loss of renal function. This study aimed to investigate the effects of AJ against cisplatin-induced AKI using a human kidney proximal tubule epithelial cell line (HK-2) and cisplatin-treated mice. In vitro, cisplatin treatment increased apoptosis in HK-2 cells. However, AJ treatment decreased apoptosis of cisplatin-treated HK-2 cells. In vivo, cisplatin treatment accelerated renal injury by increasing the levels of renal injury markers, such as blood urea nitrogen, creatinine, kidney injury molecule 1, and neutrophil gelatinase-associated lipocalin, which were reversed by AJ treatment. Histopathologically, AJ treatment resulted in decreased renal damage with less tubular necrosis and brush border desquamation compared with the AKI group. Additionally, cisplatin treatment upregulated mitochondrial fission, a pathological characteristic of AKI, which was downregulated by AJ treatment. Along with increased mitochondrial fission, AJ treatment also reduced cisplatin-induced apoptosis. These results suggest that AJ may be a potential therapeutic agent for cisplatin-induced AKI.

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

  • Long, Rui-ting;Peng, Jun-bo;Huang, Li-li;Jiang, Gui-ping;Liao, Yue-juan;Sun, Hang;Hu, Yu-dong;Liao, Xiao-hui
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.893-905
    • /
    • 2019
  • Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.

FUN14 Domain-Containing Protein 1 Is Involved in Amyloid Beta Peptide-Induced Mitochondrial Dysfunction and Cell Injury in HT-22 Neuronal Cells (HT-22 신경세포에서 아밀로이드 베타 펩티드에 의한 미토콘드리아와 세포 손상 기전에서 FUN14 도메인 함유 단백 1의 역할)

  • Jae Hoon Kang;Jae Suk Woo
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.37-47
    • /
    • 2024
  • FUN14 domain-containing protein 1 (FUNDC1), an outer mitochondrial membrane protein, contributes to removal of damaged mitochondria through mitophagy. In this study, to elucidate the role of the FUNDC1 in the amyloid beta peptide (Aβ)-induced neuropathy, changes in the degree of mitochondrial dysfunction and cell injury caused by Aβ treatment were examined in the HT-22 neuronal cells in which the FUNDC1 expression was transiently silenced or overexpressed. We found that Aβ treatment causes a time-dependent decrease of the FUNDC1 expression. In the Aβ-treated cells, there were a drop in MTT reduction ability, depletion of cellular ATP, disruption of mitochondrial membrane potential, stimulation of cellular ROS production, and increased mitochondrial Ca2+ load. Activation of caspase-3 and induction of apoptotic cell death were also observed. Transient silencing of the FUNDC1 expression by transfection with the FUNDC1 small interfering RNA per se caused mitochondrial dysfunction and apoptotic cell death like the effect of Aβ treatment. Conversely, in cells in which the FUNDC1 was transiently overexpressed by FUNDC1-Myc transfection, overexpression itself had no effect on the mitochondrial functional integrity and cell survival but showed a significant prevention effect against mitochondrial and cell injury caused by Aβ treatment. Overall, these results suggest that the FUNDC1 is importantly involved in the Aβ-induced mitochondrial dysfunction and cell injury in the HT-22 neuronal cells.

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

Benzoylaconine improves mitochondrial function in oxygen-glucose deprivation and reperfusion-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis

  • Chen, Leijie;Yan, Laixing;Zhang, Weiwei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2022
  • Heart failure (HF) has become one of the severe public health problems. The detailed role of mitochondrial function in HF was still unclear. Benzoylaconine (BAC) is a traditional Chinese medicine, but its role in HF still needs to be explored. In this study, oxygen-glucose deprivation and reperfusion (OGD/R) was executed to mimic the injury of H9C2 cells in HF. The viability of H9C2 cells was assessed via MTT assay. OGD/R treatment markedly decreased the viability of H9C2 cells, but BAC treatment evidently increased the viability of OGD/R-treated H9C2 cells. The apoptosis of H9C2 was enhanced by OGD/R treatment but suppressed by BAC treatment. The mitochondrial membrane potential was evaluated via JC-1 assay. BAC improved the mitochondrial function and suppressed oxidative stress in OGD/R-treated H9C2 cells. Moreover, Western blot analysis revealed that the protein expression of p-AMPK and PGC-1α were reduced in OGD/R-treated H9C2 cells, which was reversed by BAC. Rescue assays indicated that AMPK attenuation reversed the BAC-mediated protective effect on OGD/R-treated cardiomyocytes. Moreover, BAC alleviated myocardial injury in vivo. In a word, BAC modulated the mitochondrial function in OGD/R-induced cardiomyocyte injury by activation of the AMPK/PGC-1 axis. The findings might provide support for the application of BAC in the treatment of HF.

Protective Effects of $\alpha$-Tocopherol and Ischemic Preconditioning on Hepatic Reperfusion Injury

  • Lee Woo-Yang;Lee Sun-Mee
    • Archives of Pharmacal Research
    • /
    • v.28 no.12
    • /
    • pp.1392-1399
    • /
    • 2005
  • This study evaluated the effect of $\alpha$-tocopherol ($\alpha$-TC), ischemic preconditioning (IPC) or a combination on the extent of mitochondrial injury caused by hepatic ischemia/reperfusion (I/R). Rats were pretreated with $\alpha$-TC (20 mg/kg per day, i.p.) for 3 days before sustained ischemia. A rat liver was preconditioned with 10 min of ischemia and 10 min of reperfusion, and was then subjected to 90 min of ischemia followed by 5 h or 24 h of reperfusion. I/R increased the aminotransferase activity and mitochondrial lipid peroxidation, whereas it decreased the mitochondrial glutamate dehydrogenase activity. $\alpha$-TC and IPC individually attenuated these changes. $\alpha$-TC combined with IPC ($\alpha$-TC+IPC) did not further attenuate the changes. The mitochondrial glutathione content decreased after 5 h reperfusion. This decrease was attenuated by $\alpha$-TC, IPC, and $\alpha$-TC+IPC. The significant production of peroxides observed after 10 min reperfusion subsequent to sustained ischemia was attenuated by $\alpha$-TC, IPC, and $\alpha$-TC+IPC. The mitochondria isolated after I/R were rapidly swollen. However, this swelling rate was reduced by $\alpha$­TC, IPC, and $\alpha$-TC+IPC. These results suggest that either $\alpha$-TC or IPC reduces the level of mitochondrial damage associated with oxidative stress caused by hepatic I/R, but $\alpha$- TC combined with IPC offers no significant additional protection.

Proposed Mechanisms of Photobiomodulation (PBM) Mediated via the Stimulation of Mitochondrial Activity in Peripheral Nerve Injuries

  • Choi, Ji Eun
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.195-200
    • /
    • 2021
  • Evidence shows that nerve injury triggers mitochondrial dysfunction during axonal degeneration. Mitochondria play a pivotal role in axonal regeneration. Therefore, normalizing mitochondrial energy metabolism may represent an elective therapeutic strategy contributing to nerve recovery after damage. Photobiomodulation (PBM) induces a photobiological effect by stimulating mitochondrial activity. An increasing body of evidence demonstrates that PBM improves ATP generation and modulates many of the secondary mediators [reactive oxygen species (ROS), nitric oxide (NO), cyclic adenosine monophosphate (cAMP), and calcium ions (Ca2+)], which in turn activate multiple pathways involved in axonal regeneration.