• 제목/요약/키워드: mitochondrial genetic variation

검색결과 104건 처리시간 0.018초

Population Genetic Structure of Carassius auratus (Pisces: Cypriniformes) in South Korea Inferred from AFLP Markers: Discordance with Mitochondrial Genetic Structure

  • Jung, Jongwoo
    • Animal Systematics, Evolution and Diversity
    • /
    • 제29권1호
    • /
    • pp.18-22
    • /
    • 2013
  • A recent study on the mitochondrial genetic variation of the Carassius auratus population in South Korea suggested that there are 3 distinct mitochondrial lineages in the country, and that they are geographically separated between westward rivers and southward rivers, respectively. In this study, the population genetic structure of amplified fragment length polymorphism (AFLP) of Carassius auratus was investigated. The results of analysis of molecular variance (AMOVA) supported the geographic distinction between westward and southward river populations, but only 3.66% of total genetic variance lies among these populations. The panmicticity of the AFLP genetic variation is backed up by the results of the neighbor-joining dendrogram drawn from a linearized pairwise $F_{ST}$ matrix and Bayesian clustering analysis. The discordance of genetic structure between mitochondrial and AFLP genetic variation may come from difference in effective population size between these markers and/or gene flow between westward and southward river populations through river capture events.

Discrepancies between Mitochondrial DNA and AFLP Genetic Variation among Lineages of Sea Slaters Ligia in the East Asian Region

  • Kang, Seunghyun;Jung, Jongwoo
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.347-353
    • /
    • 2020
  • Although sea slaters Ligia have a significant role in rocky shore habitats, their taxonomic entities have not been clearly understood. In this study, we investigated whether genetic variation inferred from a nuclear genetic marker, namely amplified fragment length polymorphism (AFLP), would conform to that of a mitochondrial DNA marker. Using both the mitochondrial DNA marker and the AFLP marker amplified by the six selective primer sets, we analyzed 95 Ligia individuals from eight locations from East Asia. The direct sequencing of mitochondrial 16S rRNA gene revealed three distinct genetic lineages, with 9.8-11.7 Kimura 2-parameter genetic distance. However, the results of AFLP genotyping analysis with 691 loci did not support those of mitochondrial DNA, and revealed an unexpectedly high proportion of shared polymorphisms among lineages. The inconsistency between the two different genetic markers may be explained by difference in DNA evolutionary history, for example inheritance patterns, effective population size, and mutation rate. The other factor is a possible genomic island of speciation, in that most of the genomic parts are shared among lineages, and only a few genomic regions have diverged.

Genetic Variation of Korean Masu Salmon (Oncorhynchus masou) Populations Inferred from Mitochondrial DNA Sequence Analysis

  • Yoon, Moon-Geun;Jin, Hyung-Joo;Seong, Ki-Baek;Jin, Deuk-Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제11권1호
    • /
    • pp.36-40
    • /
    • 2008
  • We analyzed the nucleotide sequences of about 500 bp of the mitochondrial NADH dehydrogenase subunit 3 (ND3) gene to estimate the genetic variation of Korean masu salmon (Oncorhynchus masou) populations. DNA samples were collected from 104 river-only specimens and 52 anadromous specimens from three hatcheries and one river. There are no records of artificial release into the river. We amplified the ND3 gene by polymerase chain reaction, targeting areas that included parts of the cytochrome oxidase III gene and the NADH dehydrogenase subunit 4L gene, and defined 14 haplotypes based on 12 variable nucleotide sites in the examined region. Among the haplotypes, ten were specific to river-only specimens within hatchery populations. Haplotype diversity of river-only populations in hatcheries was higher than that of anadromous and wild populations. Pairwise population $F_{ST}$ estimates and neighbor-joining tree analyses inferred that anadromous and river-only populations were distinct. These results suggest that sequence polymorphism in the ND3 region may be a useful marker for analyzing the genetic variation and population structure of masu salmon.

제주마의 mitochondrial DNA 다형(多型)의 분석(分析) (Mitochondrial DNA polymorphism in the Cheju horses)

  • 한방근;장덕지;츠치다 슈이치;이케모토 시게노리
    • 대한수의학회지
    • /
    • 제34권2호
    • /
    • pp.243-247
    • /
    • 1994
  • As a result of the detection of mitochondrial DNA(mtDNA) polymorphism to Thoroughbred and Percheron using 14 restriction enzymes, mtDNA polymorphism of Cheju horse observed in the Bam HI and Sac I. Only in both restriction enzymes two types were classified as of A type, which is high expression frequency and B type, which is low expression frequency. In the other 12 restriction enzymes mtDNA polymorphism was not detected. On the basis of this information mtDNA polymorphism of Cheju horse was examined but was not observed the polymorphism and only A type was expressed both Bam HI and Sac I restriction enzymes. Through this study Cheju horse was demonstrated that lower genetic variation was expressed from the detection of mtDNA polymorphism.

  • PDF

COII Sequence-based Study for Population Genetic Variation of a Ground Beetle, Scarites aterrimus (Coleoptera : Carabidae)

  • Wang, Ah-Rha;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제24권1호
    • /
    • pp.41-47
    • /
    • 2012
  • The Scarites aterrimus (Coleoptera: Carabidae) dwells exclusively on coastal sandy dunes. Previously, we investigated the nation-wide magnitude and nature of genetic diversity of the species using mitochondrial COI gene and found moderate to low magnitude of sequence diversity, the presence of closely related haplotypes, and relatively high gene flow estimate. Based on these observations we concluded that the species had no historical barriers that bolster genetic subdivision and possible population decline. In this study, we additionally sequenced mitochondrial COII gene from 23 individuals collected from 9 Korean localities to confirm previous findings. Sequencing of 688 bp COII gene provided 5 haplotypes ranging in sequence divergence from 0.145% to 0.291% (1 ~ 2 bp), further confirming low sequence divergence of the species. Gene flow estimates and genetic diversity estimates also support the previous findings that there had been no historical barriers that bolster genetic subdivision.

Mitochondrial Genetic Variation of Pen Shell, Atrina pectinata in Korea and Japan

  • Kim, Dongsung;Rho, Hyun Soo;Jung, Jongwoo
    • Animal Systematics, Evolution and Diversity
    • /
    • 제33권3호
    • /
    • pp.169-175
    • /
    • 2017
  • In the northwestern Pacific region, the pen shell (Atrina pectinata) is a widely distributed bivalve and economically important in fisheries. Recently, stock of this species has been greatly reduced due to overexploitation and marine pollution, which arouses interest in conservation. Studies on genetic and taxonomic entities of pen shells have not been tried in Korea, which makes difficult to take measures for effective conservation of this marine resource. In this study, we investigated mitochondrial genetic polymorphism of pen shells collected from 4 locations in Korea and Japan using cytochrome c oxidase I (COI) gene sequences. A total of 39 haplotypes were identified among 86 individuals of pen shell. Although only 5 haplotypes were shared, no significant genetic differentiation was observed between Korean and Japanese populations. These results suggest that pen shell populations of these regions share an ancestral population which might have experienced expansion during the Pleistocene, but gene flow must have been highly restricted after expansion.

Genetic Diversity in Cultured and Wild Populations of the Ascidian Halocynthia roretzi Inferred from Mitochondrial DNA Analysis

  • Yoon, Moon-Geun;Lee, Joo-Kyung;Jin, Hyung-Joo;Jin, Deuk-Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.44-48
    • /
    • 2009
  • Nucleotide sequences of about 500 bp from the 5' end of mitochondrial (mt) DNA Cytochrome Oxidase I (COI) were analyzed to estimate the genetic variation between wild and cultured populations of the ascidian Halocynthia roretzi from two sites along the coast of Korea. A total of 25 haplotypes were defined by 21 variable nucleotide sites in the examined COI region. Genetic diversity (haplotype diversity and nucleotide divergence) of wild populations was higher than that of the cultured population. These data suggest that reduced genetic variation in the cultured population may have results from bottleneck effect caused by the use of a limited number of parental stock and pooling of gametes for fertilization. Pairwise population $F_{ST}$ estimates inferred that wild and cultured populations were genetically distinct. The combined results suggest that sequence polymorphism in the COI region would be preferable for estimating the genetic diversity of ascidian populations.

Genetic Variation in the Asian Shore Crab Hemigrapsus sanguineus in Korean Coastal Waters as Inferred from Mitochondrial DNA Sequences

  • Hong, Sung-Eic;Kim, Jin-Koo;Yu, Jeong-Nam;Kim, Keun-Yong;Lee, Chung-Il;Hong, Kwan-Eui;Park, Kie-Young;Yoon, Moon-Geun
    • Fisheries and Aquatic Sciences
    • /
    • 제15권1호
    • /
    • pp.49-56
    • /
    • 2012
  • Genetic variation in the Asian shore crab Hemigrapsus sanguineus was determined from partial mitochondrial DNA (mtDNA) sequences of the cytochrome b (Cytb) gene. Samples included 143 crabs from six localities along three coastlines in South Korea. A nucleotide sequence analysis revealed 38 variable sites in a 470-bp sequence, which defined 37 haplotypes. The haplotypes were not associated geographically and had a shallow genealogy. Pairwise $F_{ST}$ tests and a two-dimensional scaling analysis revealed no significant genetic differentiation among most of the populations. The low pairwise comparison values, but significant genetic differentiation of a northeastern population from all other populations, might have been influenced by a restriction in gene flow caused by hydrographic conditions such as ocean boundaries. The high haplotype diversity, low nucleotide diversity, and time since H. sanguineus expansion in Korean coastal waters indicate rapid population growth and a recent, sudden expansion in the Late Pleistocene.

Determination of Phylogenetic Relationships of Turkish Native Cattle Breeds with Other Cattle Breeds Using Mitochondrial DNA D-loop Sequence Polymorphism

  • Ozdemir, Memis;Dogru, Unsal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권7호
    • /
    • pp.955-961
    • /
    • 2009
  • The aim of this study was to determine the specific polymorphic sites in cattle breeds and inter- and interbreed genetic variation among breeds and to develop a databank of Turkish native cattle mtDNA using sequence analysis. The entire D-loop region was analyzed based on DNA sequences in Turkish Grey, East Anatolian Red, South Anatolian Red, and Anatolian Black native breeds. In total, 68 nucleotide differences were observed at 26 different sites. The variable positions consisted of 22 transitions, two transversions, and two insertions, but no deletions. Haplotype number, haplotype diversity, nucleotide diversity, and mean number of pairwise difference values were found to be 17, 0.993, 0.00478, and 4.275, respectively. In addition, a phylogeny was developed by comparison among cattle populations for which the entire D-loop sequence was available. A high level of genetic variation was observed within and among the native cattle breeds.