DOI QR코드

DOI QR Code

COII Sequence-based Study for Population Genetic Variation of a Ground Beetle, Scarites aterrimus (Coleoptera : Carabidae)

  • Wang, Ah-Rha (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Ik-Soo (College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2012.02.21
  • Accepted : 2012.03.11
  • Published : 2012.03.31

Abstract

The Scarites aterrimus (Coleoptera: Carabidae) dwells exclusively on coastal sandy dunes. Previously, we investigated the nation-wide magnitude and nature of genetic diversity of the species using mitochondrial COI gene and found moderate to low magnitude of sequence diversity, the presence of closely related haplotypes, and relatively high gene flow estimate. Based on these observations we concluded that the species had no historical barriers that bolster genetic subdivision and possible population decline. In this study, we additionally sequenced mitochondrial COII gene from 23 individuals collected from 9 Korean localities to confirm previous findings. Sequencing of 688 bp COII gene provided 5 haplotypes ranging in sequence divergence from 0.145% to 0.291% (1 ~ 2 bp), further confirming low sequence divergence of the species. Gene flow estimates and genetic diversity estimates also support the previous findings that there had been no historical barriers that bolster genetic subdivision.

Keywords

References

  1. Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations using median networks. Genetics 141, 743-753.
  2. Cameron SL, Sullivan J, Song H, Miller KB, Whiting MF (2009) A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool Scr 38, 575-590. https://doi.org/10.1111/j.1463-6409.2009.00392.x
  3. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0. An integrated software package for population genetics data analysis. Evol Bioinf Online 1, 47-50.
  4. Felsenstein J (1985) Confidence limits on phylogenics: an approach using the bootstrap. Evolution 29, 783-791.
  5. Finn DS, Blouin MS, Lytle DA (2007) Population genetic structure reveals terrestrial affinities for a headwater stream insect. Freshwater Biol 52, 1881-1897. https://doi.org/10.1111/j.1365-2427.2007.01813.x
  6. Fitch WM (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20, 406-416. https://doi.org/10.2307/2412116
  7. Kawakami K, Sugiura S (2006) Feefing of a shore-inhabiting ground beetle, Scarites aterrimus (Coleoptera: Carabidae). Coleopterists Bull 60, 75-79. https://doi.org/10.1649/869.1
  8. Kim JI (1980) Deux nouvelles especes du genre Psammdius Coréen (Col. Aphodiidae). The Korean J Entomology 5, 9-11.
  9. Kim JI (2003) Insects Fauna from the Coastal Sand-dunes of Korea. Kor J Nature Conser 1, 27-45.
  10. Krafsur ES (2002) Population structure of the tsetse fly Glossina pallidipes estimated by allozyme, microsatellite and mitochondrial gene diversities Insect Mol Biol 11, 37-45. https://doi.org/10.1046/j.0962-1075.2001.00307.x
  11. Marquez JG, Krafsur ES (2002) Gene flow among geographically diverse housefly populations (Musca domestica L.): A worldwide survey of mitochondrial diversity. J Hered 93, 254-259. https://doi.org/10.1093/jhered/93.4.254
  12. Oshaghi MA, Shemshad K, Yaghobi-Ershadi MR, Pedram M, Vatandoost H, Abaie MR, Akbarzadeh K, Mohtarami F (2007) Genetic structure of the malaria vector Anopheles superpictus in Iran using mitochondrial cytochrome oxidase (COI and COII) and morphologic markers: A new species complex? Acta Trop 101, 241-248. https://doi.org/10.1016/j.actatropica.2007.02.006
  13. Pons J, Ribera I, Bertranpetit J, Balke M (2010) Nucleotide substitution rates for the full set of mitochondrial proteincoding genes in Coleoptera. Mol Phylogenet Evol 56, 796-807. https://doi.org/10.1016/j.ympev.2010.02.007
  14. Sheffield NC, Song H, Cameron SL, Whiting MF (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol Biol Evol 25, 2499-2509. https://doi.org/10.1093/molbev/msn198
  15. Song H, Nathan C, Sheffield NC, Cameron SL, Miller KB, Whiting MF (2010) When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst Entomol 35, 429-448. https://doi.org/10.1111/j.1365-3113.2009.00517.x
  16. Swofford DL (2002) PAUP* .Phylogenetic Analysis Using Parsimony (*and Other Method) ver. 4.10., Sinauer Associates, Sunderland, MA.
  17. Thomson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24, 173-216.
  18. Wang AR, Kim, MJ, Cho YB, Wan X, Kim I (2011) Geographic genetic contour of a ground beetle, Scarites aterrimus (Coleoptera: Carabidae) on the basis of mitochondrial DNA sequence. Int J Indust Entomol 22, 65-74. https://doi.org/10.7852/ijie.2011.22.2.65
  19. Watterson GA, Guess HA (1977) Is the most frequent allele the oldest? Theor Popul Biol 7, 141-160.