• 제목/요약/키워드: mitochondrial cytochrome c oxidase subunit 1

검색결과 129건 처리시간 0.027초

Phylogenetic Analysis of Reticulitermes speratus using the Mitochondrial Cytochrome C Oxidase Subunit I Gene

  • Cho, Moon-Jung;Shin, Keum;Kim, Young-Kyoon;Kim, Yeong-Suk;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.135-139
    • /
    • 2010
  • Reticulitermes speratus is commonly found in Asia, including Korea and Japan. We recently analyzed the 5' region of mitochondrial cytochrome c oxidase subunit I to perform a phylogenetic analysis of R. speratus KMT1, isolated in Seoul, Korea. Our results, using COXI, suggest that the taxonomy of R. speratus should be reconsidered with regard to the subgenus group. A similar phylogenetic analysis by COXI and COXII demonstrated the reliability of COXI genetic information in a molecular phylogenetic analysis of termites.

Molecular phylogeny of parasitic Platyhelminthes based on sequences of partial 28S rDNA D1 and mitochondrial cytochrome c oxidase subunit I

  • Lee, Soo-Ung;Chun, Ha-Chung;Huh, Sun
    • Parasites, Hosts and Diseases
    • /
    • 제45권3호
    • /
    • pp.181-190
    • /
    • 2007
  • The phylogenie relationships existing among 14 parasitic Platyhelminthes in the Republic of Korea were investigated via the use of the partial 28S ribosomal DNA (rDNA) D1 region and the partial mitochondrial cytochrome c oxidase subunit 1 (mCOI) DNA sequences. The nucleotide sequences were analyzed by length, G + C %, nucleotide differences and gaps in order to determine the analyzed phylogenie relationships. The phylogenie patterns of the 28S rDNA D1 and mCOI regions were closely related within the same class and order as analyzed by the PAUP 4.0 program, with the exception of a few species. These findings indicate that the 28S rDNA gene sequence is more highly conserved than are the mCOI gene sequences. The 28S rDNA gene may prove useful in studies of the systematics and population genetic structures of parasitic Platyhelminthes.

Molecular phylogenie location of the Plagiorchis muris(Digenea, Plagiorchiidae) based on sequences of partial 28S D1 rDNA and mitochondrial cytochrome C oxidase subunit I

  • Lee, Soo-Ung;Huh, Sun;Sohn, Woon-Mok
    • Parasites, Hosts and Diseases
    • /
    • 제42권2호
    • /
    • pp.71-75
    • /
    • 2004
  • To determine the molecular phylogenie location of Plagiorchis muris, 28S D1 ribosomal DNA (rDNA) and mitochondrial cytochrome C oxidase subunit I (mtCOI) were sequenced and compared with other trematodes in the family Plagiorchiidae. The 28S D1 tree of P. muris was found to be closely related to those of P. elegans and other Plagiorchis species. And, the mtCOI tree also showed that P. muris is in a separate clade with genus Glypthelmins. These results support a phylogenie relationship between members of the Plagiorchiidae, as suggested by morphologic features.

Intraspecific variation of gene structure in the mitochondrial large subunit ribosomal RNA and cytochrome c oxidase subunit 1 of Pyropia yezoensis (Bangiales, Rhodophyta)

  • Hwang, Il Ki;Kim, Seung-Oh;Hwang, Mi Sook;Park, Eun-Jeong;Ha, Dong-Soo;Lee, Sang-Rae
    • ALGAE
    • /
    • 제33권1호
    • /
    • pp.49-54
    • /
    • 2018
  • Red algal mitochondrial genomes (mtDNAs) can provide useful information on species identification. mtDNAs of Pyropia / Porphyra (Bangiales, Rhodophyta) have shown diverse variation in their size and gene structure. In particular, the introns and intronic open reading frames found in the ribosomal RNA large subunit gene (rnl) and cytochrome c oxidase subunit 1 gene (cox1) significantly vary the mitochondrial genome size in Pyropia / Porphyra species. In this study, we examined the exon / intron structure of rnl and cox1 genes of Pyropia yezoensis at the intraspecific level. The combined data of rnl and cox1 genes exhibited 12 genotypes for 40 P. yezoensis strains, based on the existence of introns. These genotypes were more effective to identify P. yezoensis strains in comparison to the traditional DNA barcode cox1 marker (5 haplotypes). Therefore, the variation in gene structure of rnl and cox1 can be a novel molecular marker to discriminate the strains of Pyropia species.

Utility of taxon-specific molecular markers for the species identification of herbarium specimens: an example from Desmarestia japonica (Phaeophyceae, Desmarestiales) in Korea

  • Lee, Sang-Rae;Lee, Eun-Young
    • Fisheries and Aquatic Sciences
    • /
    • 제21권3호
    • /
    • pp.8.1-8.6
    • /
    • 2018
  • Desmarestia japonica (Phaeophyceae, Desmarestiales) was recently established from the Japanese ligulate Desmarestia and is morphologically similar to D. ligulata. This species has been reported only from Japan. However, the taxonomic reports based on additional regional distributions are needed to clarify this taxonomic entity and its species boundaries. Because Desmarestia species have restricted distributions in Korea, we reexamined herbarium specimens of D. ligulata deposited at the National Institute of Biological Resources (South Korea). To improve the amplification efficiency of the polymerase chain reaction and avoid contamination by the DNA of other organisms, we developed taxon-specific molecular markers suitable for DNA barcoding of Desmarestia species. Nuclear ribosomal small subunit RNA (18S rDNA) and mitochondrial cytochrome c oxidase 1 (cox1) regions were selected as target DNA. As a result, both were successfully isolated from herbarium specimens of D. japonica acquired over 10 years. These molecular markers provide useful genetic information for herbarium specimens for which conventional molecular analysis is challenging.

Sequence comparisons of 28S ribosomal DNA and mitochondrial cytochrome c oxidase subunit I of Metagonimus yokogawai, M. takahashii and M. miyatai

  • Lee, Soo-Ung;Huh, Sun;Sohn, Woon-Mok;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제42권3호
    • /
    • pp.129-135
    • /
    • 2004
  • We compared the DNA sequences of the genus Metagonimus: M. yokogawai, M. takahashii, and M. miyatai. We obtained 288 D1 ribosomal DNA (rDNA) and mitochondrial cytochrome c oxidase subunit I (mtCOI) fragments from the adult worms by PCR, that were cloned and sequenced. Phylogenetic relationships inferred from the nucleotide sequences of the 28S D1 rDNA and mtCOI gene. M. takahashii and M. yokogawai are placed in the same clade supported by DNA sequence and phylogenie tree analysis in 28S D1 rDNA and mtCOI gene region. The above findings tell us that M. takahashii is closer to M. yokogawai than to M. miyatai genetically. This phylogenetic data also support the nomination of M. miyatai as a separate species.

Cytochrome c oxidase subunit 1과 RAPD 분석에 의한 한국 전복속의 계통 연구 (Phylogenetic Study of Genus Haliotis in Korea by Cytochrome c Oxidase Subunit 1 and RAPD Analysis)

  • 서용배;강성철;최성석;이종규;정태혁;임한규;김군도
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.406-413
    • /
    • 2016
  • 전복은 전복속(Haliotis)에 속하며 전 세계적으로 식품산업에서 중요한 복족류 연체동물이다. 우리나라에는 6개종; 북방전복(Haliotis discus hannai), 둥근전복(Haliotis discus discus), 왕전복(Haliotis madaka), 말전복(Haliotis gigantea), 오분자기(Haliotis diversicolor diversicolor), 마대오분자기(Haliotis diversicolor supertexta)가 보고되어 있다. 이 연구에서는 우리나라 해역에 서식하는 중ㆍ대형 전복과 4종인 북방전복, 둥근전복, 왕전복, 말전복의 유전학적 유연관계를 분석하기 위하여 미토콘드리아의 cytochrome c oxidase subunit I (COI) 유전자와 Random Amplified Polymorphic DNA (RAPD) 분석법을 실시 하였다. 본 연구의 결과 COI 유전자 분석과 RAPD 분석을 활용하면 4종의 전복 중 북방전복, 둥근전복, 왕전복을 한 그룹으로 나머지 한 그룹을 말전복으로 구분하는 종 분류는 명확히 구분할 수 있었다. 이러한 결과는 전복 교잡육종을 이용한 수출용 전복 신종자 개발에 있어 주요 대상종인 전복과 4종에 대한 유전적 근연 관계를 규정함으로써 향후 교잡육종 연구의 기초 자료를 제공할 수 있을 것으로 사료된다.

Rhabditidae과 선충의 CO II 유전자 클로닝 및 염기서열 분석 (Cloning and Sequencing of the Mitochondrial Cytochrome c Oxidase Subunit II Gene from Rhabditidae Family Nematode)

  • 이상몽;손홍주;김근기;홍창오;박현철
    • 한국환경과학회지
    • /
    • 제28권1호
    • /
    • pp.75-84
    • /
    • 2019
  • Cytochrome c oxidase subunit II gene(CO II gene) is subunit of cytochrome oxidase, which is complex IV of mitochondria electron transport system. It has been frequently used in molecular phylogenetic studies because the speed of its DNA variation is faster than that of nucleus. It is especially useful in phylogenetic study of molecular biology in insects. In this study, we cloned and sequenced CO II gene of mitochondria DNA from Rhabditidae family nematode. Our results showed that this gene is comprised of 696 base pairs(bp). In the analysis of similarity of this gene with other known genes of 14 species of nematodes in Rhabditida order, we identified that this gene has high similarity with that of Caenorhabditis briggsae(86.0%) and C. elegans(85.6%) in Rhabditidae family. On the meanwhile, it has very low similarity with that of Angiostrongylus cantonensis(31.8%) in Angiostrongylidae family and Metastrongylus salmi(31.6%) in Metastrongylidae family. Based on the results of this study, we suggest that this nematode is closely related with that of Caenorhabditis genus in Rhabditidae family.

Molecular Characterization of Hard Ticks by Cytochrome c Oxidase Subunit 1 Sequences

  • Gou, Huitian;Xue, Huiwen;Yin, Hong;Luo, Jianxun;Sun, Xiaolin
    • Parasites, Hosts and Diseases
    • /
    • 제56권6호
    • /
    • pp.583-588
    • /
    • 2018
  • Although widely studied, the natural diversity of the hard tick is not well known. In this study, we collected 194 sequences from 67 species, covering 7 genera of hard tick. The 5' region of the mitochondrial cytochrome c oxidase subunit 1 region (586 bp) has been used to investigate intra- and inter-species variation and the phylogenetic tree of neighbor joining method has been used for assessment. As a result, by comparing the K2P-distance of intra- and interspecies, 30 samples (15.2%) shown that interspecies distance was larger than the minimum interspecfic distance. From the phylogenetic analysis, 86.8% (49) of the species were identified correctly at the genus level. On deeper analysis on these species suggested the possibility of presence cryptic species. Therefore, further work is required to delineate species boundaries and to develop a more complete understanding of hard tick diversity over larger scale.