• Title/Summary/Keyword: mitochondrial ROS

Search Result 300, Processing Time 0.022 seconds

Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells

  • Kim, Kkot Byeol;Lee, Seonah;Kim, Jung Hee
    • Nutrition Research and Practice
    • /
    • v.14 no.1
    • /
    • pp.3-11
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Oxidative stress causes cell damage and death, which contribute to the pathogenesis of neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced neuronal cell death. MATERIALS/METHODS: We induced oxidative damage with 300 μM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, and 5 μM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.

Relative Apoptosis-inducing Potential of Homeopathic Condurango 6C and 30C in H460 Lung Cancer Cells In vitro -Apoptosis-induction by homeopathic Condurango in H460 cells-

  • Sikdar, Sourav;Saha, Santu Kumar;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.17 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • Objectives: In homeopathy, it is claimed that more homeopathically-diluted potencies render more protective/curative effects against any disease condition. Potentized forms of Condurango are used successfully to treat digestive problems, as well as esophageal and stomach cancers. However, the comparative efficacies of Condurango 6C and 30C, one diluted below and one above Avogadro's limit (lacking original drug molecule), respectively, have not been critically analyzed for their cell-killing (apoptosis) efficacy against lung cancer cells in vitro, and signalling cascades have not been studied. Hence, the present study was undertaken. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were conducted on H460-non-small-cell lung cancer (NSCLC) cells by using a succussed ethyl alcohol vehicle (placebo) as a control. Studies on cellular morphology, cell cycle regulation, generation of reactive oxygen species (ROS), changes in mitochondrial membrane potential (MMP), and DNA-damage were made, and expressions of related signaling markers were studied. The observations were done in a "blinded" manner. Results: Both Condurango 6C and 30C induced apoptosis via cell cycle arrest at subG0/G1 and altered expressions of certain apoptotic markers significantly in H460 cells. The drugs induced oxidative stress through ROS elevation and MMP depolarization at 18-24 hours. These events presumably activated a caspase-3-mediated signalling cascade, as evidenced by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot and immunofluorescence studies at a late phase (48 hours) in which cells were pushed towards apoptosis. Conclusion: Condurango 30C had greater apoptotic effect than Condurango 6C as claimed in the homeopathic doctrine.

Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism

  • Anil Kumar, D;Natarajan, Sumathi;Omar, Nabil A M Bin;Singh, Preeti;Bhimani, Rohan;Singh, Surya Satyanarayana
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.267-279
    • /
    • 2018
  • Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). ${\beta}$-N-Oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at $200{\mu}M$ L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.

Analysis of (-)-Epigallocatechin-3-Gallate-Induced Apoptosis and Inhibition of Invasiveness in Oral Cavity Carcinoma Squamous Cell Carcinoma According to Expression of c-Met (구강암편평세포암에서 c-Met 발현여부에 따른 (-)-Epigallocatechin-3-Gallate의 세포사멸 및 종양침습억제효과의 변화분석)

  • Shin, Yoo-Seob;Koh, Yoon-Woo;Choi, Eun-Chang;Kang, Sung-Un;Hwang, Hye-Sook;Choo, Oak-Sung;Lee, Han-Bin;Kim, Chul-Ho
    • Korean Journal of Head & Neck Oncology
    • /
    • v.27 no.1
    • /
    • pp.3-11
    • /
    • 2011
  • Hepatocyte growth factor(HGF) and c-Met play an important role in the control of tumor growth and invasion, and they are known to be good prognostic indicators of patient outcome. Epigallocatechin-3-gallate (EGCG) has been shown to have chemopreventive and therapeutic properties by modulating multiple signal pathways regarding the control of proliferation and invasion of cells. In this study, we evaluated the role of c-Met in EGCG-induced inhibition of invasion and apoptosis in an oral cancer cell line. In KB cells where c-Met was knocked down with siRNA, we performed invasion assay and FACS with Annexin V-FITC/PT staining. In addition, we checked the change of mitochondrial membrane potential(MMP) and the generation of reactive oxygen species(ROS). EGCG-induced inhibition of invasiveness was significantly decreased after the knock-down of c-Met. EGCG-induced apoptosis, MMP change and ROS generation was also reduced in c-Met knock-ed-down KB cells. These results suggest that c-Met is involved in EGCG-induced apoptosis and inhibition of invasiveness of oral cancer cell line.

Establishment of Normal Reference Data of Analysis in the Fresh and Cryopreserved Canine Spermatozoa

  • Park, Byung-Joon;Lee, Hyeon-Jeong;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Embryo Transfer
    • /
    • v.33 no.2
    • /
    • pp.75-84
    • /
    • 2018
  • The cryopreservation has been extensively applied in many cells including spermatozoa (semen) during past several decades. Especially, the canine spermatozoa cryopreservation has contributed on generation of progeny of rare/genetically valuable dog breeds, genome resource banking and transportation of male germplasm at a distant place. However, severe and irreversible damages to the spermatozoa during cryopreservation procedures such as the thermal shock (cold shock), formation of intracellular ice crystals, osmotic shock, stress of cryoprotectants and generator of reactive oxygen species (ROS) have been addressed. According as a number of researches have been conducted to overcome these problems and to advance cryopreservation technique, several analytical methods have been employed to evaluate the quality of the fresh or cryopreserved canine spermatozoa in regards to the motility, morphology, integrity of membrane and DNA, mitochondrial activity, ROS generation, binding affinity to oocytes, in vitro fertilization potential and fertility potential by artificial insemination. Because the study designs with certain application of analytical methods are selective and varied depending on each experimental objective and laboratory condition, it is necessary to establish the normal reference data of the fresh or cryopreserved canine spermatozoa for each analytical method to monitor experimental procedure, to translate raw data and to discuss results. Here, we reviewed the recent articles to introduce various analytical methods for the canine spermatozoa as well as to establish the normal reference data for each analytical method in the fresh or cryopreserved canine spermatozoa, based on the results of the previous articles. We hope that this review contributes to the advancement of cryobiology in canine spermatozoa.

The importance of post-thaw subculture for standardizing cellular activity of fresh or cryopreserved mouse embryonic stem cells

  • Ko, Dong Woo;Yoon, Jung Ki;Ahn, Jong il;Lee, Myungook;Yang, Woo Sub;Ahn, Ji Yeon;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.335-343
    • /
    • 2018
  • Objective: Remarkable difference in cellular activity was found between early and late subpassaged embryonic stem cell (ESCs) lines, which can be created by subtle changes in cell manipulation protocol. This study subsequently examined whether post-thaw subculture of early subpassaged ESC lines could further affect the activity of the ESCs. Methods: Fresh (as a control treatment) or cryopreserved F1 hybrid (B6CBAF1) early ESC lines (C57BL/6xCBA) of the 4 (P4) or the 19 passage (P19) were subcultured once, twice or six times under the same condition. The post-thaw survival of the ESCs was monitored after the post-treatment subculture and the ability of cell proliferation, reactive oxygen species (ROS) generation, apoptosis and mitochondrial ATP synthesis was subsequently examined. Results: Regardless of the subculture number, P19 ESCs showed better (p<0.05) doubling time and less ATP production than P4 ESCs and such difference was not influenced by fresh or cryopreservation. The difference between P4 and P19 ESC lines became decreased as the post-treatment subculture was increased and the six times subculture eliminated such difference. Similarly, transient but prominent difference in ROS production and apoptotic cell number was detected between P4 and P19 ESCs only at the 1st subculture after treatment, but no statistical differences between two ESC lines was detected in other observations. Conclusion: The results of this study suggest that post-thaw subculture of ESCs under the same environment is recommended for standardizing their cellular activity. The activity of cell proliferation ability and ATP synthesis can be used as parameters for quality control of ESCs.

Steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are decreased in human apoptotic embryos

  • Lee, Hyo-Jin;Kim, Jin-Hee;Yang, Hyun-Won
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2011
  • Fragmentation in human pre-implantation embryos has been suggested as the process of apoptosis. We have previously demonstrated a direct relationship between the increased reactive oxygen species (ROS) and apoptosis in human pre-implantation embryos. ROS is known to suppress the function of mitochondria in which steroidogenic acute regulatory protein (StAR) and peripheral-type benzodiazepine receptor (PBR) are presented. Therefore, the purpose of this study was to examine the expression of StAR and PBR in human pre-implantation embryos and to evaluate whether reduction of these proteins is associated with apoptosis. Apoptosis was detected by annexin V-fluorescein isothiocyanate (FITC) and mitochondrial membrane potential was measured by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide (JC-1). Immunofluorescence staining and Western blotting were applied to examine the expression of StAR and PBR in the embryos. Lipid droplets in the embryos were stained with Oil Red O. The fragmented pre-implantation embryos were stained with annexin V-FITC, but not the normal ones. The mitochondria with active membrane potential were present less in the fragmented embryos compared with the non-fragmented embryos. We also confirmed that both StAR and PBR were expressed in the embryos and their expression levels were lower in the fragmented ones. In addition, the number and size of lipid droplets were increased in the fragmented embryos. The present study provides evidence that reduction of StAR and PBR in human pre-implantation embryos is associated with an increase in the lipid droplets leading to apoptosis.

Protective Effects of Potassium Ion on Rotenone-Induced Apoptosis in Neuronal (Neuro 2A) Cells

  • Park, Ji-Hwan;Kim, Yun-Ha;Moon, Seong-Keun;Kim, Tae-Young;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.6
    • /
    • pp.456-464
    • /
    • 2005
  • Objective : The authors investigated whether rotenone induces cellular death also in non-dopaminergic neurons and high concentration of potassium ion can show protective effect for non-dopaminergic neuron in case of rotenone-induced cytotoxicity. Methods : Neuro 2A cells was treated with rotenone, and their survival as well as cell death mechanism was estimated using 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium[MTT] assay, Lactate dehydrogenase[LDH] release assay, fluorescence microscopy, and agarose gel electrophoresis. The changes in rotenone-treated cells was also studied after co-treatment of 50mM KCl. And the protective effect of KCl was evaluated by mitochondrial membrane potential assay and compared with the effects of various antioxidants. Results : Neuro 2A cells treated with rotenone underwent apoptotic death showing chromosome condensation and fragmentation as well as DNA laddering. Co-incubation of neuro 2A cells with 50mM KCl prevented it from the cytotoxicity induced by rotenone. Intracellular accumulation of reactive oxygen species[ROS] resulting by rotenone were significantly reduced by 50mM KCl. Potassium exhibited significantly similar potency compared to the antioxidants. Conclusion : The present findings showed that potassium attenuated rotenone-induced cytotoxicity, intracellular accumulation of ROS, and fragmentation of DNA in Neuro 2A cells. These findings suggest the therapeutic potential of potassium ion in neuronal apoptosis, but the practical application of high concentration of potassium ion remains to be settled.

Niacinamide Protects Skin Cells from Oxidative Stress Induced by Particulate Matter

  • Zhen, Ao Xuan;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Kang, Hee Kyoung;Koh, Young Sang;Yi, Joo Mi;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.562-569
    • /
    • 2019
  • Niacinamide (NIA) is a water-soluble vitamin that is widely used in the treatment of skin diseases. Moreover, NIA displays antioxidant effects and helps repair damaged DNA. Recent studies showed that particulate matter 2.5 ($PM_{2.5}$) induced reactive oxygen species (ROS), causing disruption of DNA, lipids, and protein, mitochondrial depolarization, and apoptosis of skin keratinocytes. Here, we investigated the protective effects of NIA on $PM_{2.5}$-induced oxidative stress in human HaCaT keratinocytes. We found that NIA could inhibit the ROS generation induced by $PM_{2.5}$, as well block the $PM_{2.5}$-induced oxidation of molecules, such as lipids, proteins, and DNA. Furthermore, NIA alleviated $PM_{2.5}$-induced accumulation of cellular $Ca^{2+}$, which caused cell membrane depolarization and apoptosis, and reduced the number of apoptotic cells. Collectively, the findings show that NIA can protect keratinocytes from $PM_{2.5}$-induced oxidative stress and cell damage.

Hepatoprotective effect of Ikwiseungyang-tang via Nrf2 activation (Nrf2 활성화를 통한 익위승양탕(益胃升陽湯)의 간세포 보호 효과)

  • Jin, Hyo Jeong;Park, Sang Mi;Kim, Eun Ok;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.167-179
    • /
    • 2021
  • Objectives : Oxidative stress is a important cause of liver disease, and regulation of oxidative stress is essential to maintain the normal metabolic function of the liver. Until a recent date, there has been no studies on the hepatoprotective effect of Ikwiseungyang-tang (IWSYT). Therefore, this study aims to demonstrate the hepatoprotective effect of IWSYT and its related molecular mechanisms on arachidonic acid (AA) + iron induced oxidative stress model in HepG2 cells. Methods : To determine the cytoprotective effect of IWSYT against AA + iron-induced oxidative stress, cell viability, apoptosis-related proteins, intracellular reactive oxygen species (ROS), GSH, and mitochondrial membrane potential (MMP) were measured. Nuclear factor erythroid 2-related factor 2 (Nrf2) activation was analyzed by immunoblot analysis. In addition, Nrf2 transcription activation through ARE binding was measured by reporter gene assays, and the expression of the Nrf2 target antioxidant genes were confirmed by immunoblot analysis. Results : IWSYT increased cell viability from cell death induced by AA + Iron, and inhibited apoptosis by regulating apoptosis-related proteins. Furthermore, IWSYT protected cells by inhibiting intracellular ROS production, GSH depletion, and MMP degradation. Nrf2 activation was increased by IWSYT, and Nrf2 target genes were activated by IWSYT too. Conclusions : These results suggest that IWSYT can protect hepatocytes from oxidative stress through Nrf2 activation and can be potentially applied in the prevention and treatment of liver damage.