• Title/Summary/Keyword: mitigate

Search Result 2,580, Processing Time 0.027 seconds

Performance Analysis of Multi-Carrier CDMA Trellis coded 16 QAM System with Near/Far Effect in Frequency Selective Multipath Fading Channel (주파수 선택성 다중경로 페이딩 채널에서 Near/Far 영향을 받는 Multi-Carrier CDMA Trellis Coded 16 QAM 시스템의 성능해석)

  • 노재성;강희조;김춘길;김언곤;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3A
    • /
    • pp.353-361
    • /
    • 2000
  • The performance of a multi-carrier CDMA system is analyzed considering frequency selective multipath fading and Near/Far effects. The number of multicarrier, multiuser, and arms of RAKE receiver, and the decay ratio of frequency selective multipath fading are used as a parameter for the performance analysis. More over, the distribution and the strength of multiuser interference are also considered. To evaluated the Near/Far effects in a multi-carrier CDMA system, three distribution models are assumed. In the first model. interference to carrier Ratio, I/C, ranges form -4 dB to 4dB, and at each 2 dB interval 20 % of multiuser is assumed to be uniformly distributed. In the second one, I/C ranges from -2 dB to 2 dB, and 33.3% of multiuser is assumed to be equally dispersed at each 2dB interval. The third model is 0 dB of I/C, that is, with perfect power control, multiuser are assumed to be evenly located. In this paper, multi-carrier CDMA system adoption RAKE receiver is proposed to mitigate the frequency selective multipath fading. Form the results, the third model(i.e. perfect power control)shows the best performance, and the narrower range of I/C causes the less effects to the desired signal, which reads to the better performance.

  • PDF

Power Quality Impacts of an Electric Arc Furnace and Its Compensation

  • Esfandiari Ahmad;Parniani Mostafa;Mokhtari Hossein
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.153-160
    • /
    • 2006
  • This paper presents a new compensating system, which consists of a shunt active filter and passive components for mitigating voltage and current disturbances arising from an Electric Arc Furnace (EAF). A novel control strategy is presented for the shunt active filter. An extended method based on instantaneous power theory in a rotating reference frame is developed for extraction of compensating signals. Since voltages at the point of common coupling contain low frequency interharmonics, conventional methods cannot be used for dc voltage regulation. Therefore, a new method is introduced for this purpose. The passive components limit the fast variations of load currents and mitigate voltage notching at the Point of Common Coupling (PCC). A three-phase electric arc furnace model is used to show power quality improvement through reactive power and harmonic compensation by a shunt active filter using the proposed control method. The system performance is investigated by simulation, which shows improvement in power quality indices such as flicker severity index.

Performance Analysis of Call Admission Control Utilizing WLAN to Mitigate Congestion of Cellular Networks (WLAN을 이용한 셀룰러망 혼잡도 완화를 위한 호수락제어 성능 분석)

  • Seok, Woo-Jin;Hwang, Young-Ha;Noh, Sung-Kee;Kim, Sang-Ha
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.5
    • /
    • pp.425-436
    • /
    • 2008
  • In this paper, we propose a resource effective call admission control(CAC) in integrated WLAN and cellular network. The proposed CAC mitigates the congestion of cellular network by handing over non-realtime traffic to WLAN. We analyze the proposed CAC in numerical and simulation method. The simulation results show that the proposed CAC achieves better performance than normal CAC. Especially, the proposed CAC can sustain desired QoS more robustly against high incoming non-realtime traffic load than againt realtime traffic load.

A Systematic Method of Hinting Interface Design (체계적인 힌팅 인터페이스 설계 방법의 연구)

  • Lee, Eun-A;Yun, Wan-Cheol;Park, Wan-Su
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.125-134
    • /
    • 2006
  • Most users learn new, complex systems through trial-and-error experience rather than referring to the manuals in a cognitive process that is called 'exploratory learning'. While exploring a system, people find prototypical rules for using the system based especially on frequent tasks. The rules are formed from consistent task procedures and well-expected interface elements on the designed system. These rules play the role of the basis of users' knowledge for performing tasks. The decision making to select and apply those rules interacting with an interface can be aided by properly provided hints on the interface. With appropriate hints, users can learn new systems easily and use them with reduced usability problems. This paper first reports an observation of user behavior performing tasks with prototypical interaction rules and finds a sound set of criteria to extract prototypical interaction rules systematically. Two types of hints are defined. Extending hints prompt users to apply prototypical interaction rules beyond well-known tasks. Preventive hints guide users out of possible capture errors by drawing attention to the variation of rules. A systematic and practical method is proposed to identify the opportunities for both types in designing interfaces. It is then verified through a usability test that the proposed method is effective in identifying the locations and types of appropriate hints to reduce or mitigate usability problems.

Comparison of Dynamic Elements Matching Method in the Delta-Sigma Modulators (Dynamic Element Matching을 통한 Multi-bit Delta-Sigma Modulator에서의 DAC Error 감소 방안 비교)

  • Hyun, Deok-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.104-110
    • /
    • 2006
  • The advantage of the DSM which employ multi-bit quantizer is the increased SNR at the modulator's output. Typically 6 dB improvement is effected for every one additional bit. But multi-bit quantizer evidently requires multi-bit DAC in the feedback loop. The integral linearity error of the feedback DAC has direct impact upon the system performance and degraded SNR of the system. In order to mitigate the negative impact the DAC has on the system performance, many DEM(Dynamic Element Matching) schemes has been proposed. Among the proposed schemes, four schemes(DER,CLA,ILA,DWA) are explained and its performance has been compared. DWA(Data Weighted Averaging) method shows the best performance of the all.

Application of Risk Management for Dental Implants Based on ISO 14971 (치과용 임플란트에 대한 ISO 14971 기반의 리스크관리)

  • Yoon, Ji-Hoon;Kim, Young-Jin;Jeon, Gye-Rok;Jeong, Chang-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.92-97
    • /
    • 2012
  • Risk management is the process that helps to identify hazards, analyze them, and then to create an action plan to avoid and mitigate these hazards. The main objective of risk management in product development and manufacturing is to provide safe and efficient products without spending too many resources. Medical device manufacturers also face enormous risks - regulatory, legal, and financial - based on their products and processes, and the concepts of risk management are particularly important because any single failure may result in serious damages to body or loss of life. In this regard, a set of guidelines for the application of risk management to medical devices has been issued by ISO and specified in the document ISO 14971 Medical devices - Application of risk management to medical devices. The main objective of this study is to investigate the application of risk management to dental implant development and manufacturing processes based on ISO 14971. A general risk management process is first introduced, and the application of ISO 14971 to dental implants is further investigated.

Application of Biocathodes in Microbial Fuel Cells: Opportunities and Challenges

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.410-420
    • /
    • 2012
  • The heavy reliance on fossil fuels, especially oil and gas has triggered the global energy crisis. Continued use of petroleum fuels is now widely recognized as unsustainable because of their depleting supplies and degradation to the environment. To become less dependent on fossil fuels, current world is shifting paradigm in energy by developing alternative energy sources mainly through the utilization of renewable energy sources. In particular, bioenergy recovery from wastes with the help of microorganism is viewed as one of the promising ways to mitigate the current global warming crisis as well as to supply global energy. It has been proved that microorganism can generate power by converting organic matter into electricity using microbial fuel cells (MFCs). MFC is a bioelectrochemical device that employs microbes to generate electricity from bio-convertible substrate such as wastewaters including municipal solid waste, industrial, agriculture wastes, and sewage. Sustainability, carbon neutral and generation of renewable energy are some of the major features of MFCs. However, the MFC technology is confronted with a number of issues and challenges such as low power production, high electrode material cost and so on. This paper reviews the recent developments in MFC technology with due consideration of electrode materials used in MFCs. In addition, application of biocathodes in MFCs has been discussed.

Optimized Design of Rotor Considering Cost-Reduction of Small BLDC Motor for the Water Pump (펌프용 소형 BLDC 모터의 원가절감을 고려한 회전자 최적화 설계)

  • Kim, Hoe-Cheon;Jung, Tae-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.495-501
    • /
    • 2013
  • In the present study, a BLDC motor for a pump in which a neodymium PM is replaced with a Ferrite PM has been developed in preparation for the cost increase and to ensure the stability of the resource supply. One of the currently used motors for pumps is a BLDC motor having an interior PM wherein a rare-earth PM is adopted. However, a BLDC motor for a pump is designed to have large airgap because of the use of a waterproof insulator according to its structural characteristics, and therefore, a SPM structure is suitable. Hence, an SPM BLDC motor in which a Ferrite PM is used is designed. Nevertheless, the use of Ferrite instead of rare-earth materials causes a deterioration in the performance of the electric motor, such as a decrease in the BEMF and the maximum power of the motor and the irreversible demagnetization of the PM. In order to mitigate such disadvantages, an optimized design of the BLDC motor is developed by changing each design parameter and by improving the electromagnetism structure.

Seismic damage detection of a reinforced concrete structure by finite element model updating

  • Yu, Eunjong;Chung, Lan
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.253-271
    • /
    • 2012
  • Finite element (FE) model updating is a useful tool for global damage detection technique, which identifies the damage of the structure using measured vibration data. This paper presents the application of a finite element model updating method to detect the damage of a small-scale reinforced concrete building structure using measured acceleration data from shaking table tests. An iterative FE model updating strategy using the least-squares solution based on sensitivity of frequency response functions and natural frequencies was provided. In addition, a side constraint to mitigate numerical difficulties associated with ill-conditioning was described. The test structure was subjected to six El Centro 1942 ground motion histories with different Peak Ground Accelerations (PGA) ranging from 0.06 g to 0.5 g, and analytical models corresponding to each stage of the shaking were obtained using the model updating method. Flexural stiffness values of the structural members were chosen as the updating parameters. In model updating at each stage of shaking, the initial values of the parameter were set to those obtained from the previous stage. Severity of damage at each stage of shaking was determined from the change of the updated stiffness values. Results indicated that larger reductions in stiffness values occurred at the slab members than at the wall members, and this was consistent with the observed damage pattern of the test structure.

Numerical and experimental investigation of control performance of active mass damper system to high-rise building in use

  • Park, S.J.;Lee, J.;Jung, H.J.;Jang, D.D.;Kim, S.D.
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.313-332
    • /
    • 2009
  • This paper numerically and experimentally investigates the control performance of the active mass damper (AMD) systems in a 26-story high-rise building in use. This is the first full-scale application of the AMD system for suppressing the wind-induced vibration of a building structure in Korea. In addition, the AMD system was installed on top of the building already in use, which may be the world's first implementation case. In order to simultaneously mitigate the transverse-torsional coupled vibration of the building, two AMD systems were applied. Moreover, the H-infinity control algorithm has been developed to utilize the maximum capacity of the AMD system. From the results of numerical simulation using the wind load obtained from the wind tunnel tests, it was found that the maximum acceleration responses of the building were reduced significantly. Moreover, the control performance of the installed AMD system was examined by carrying out the free and forced vibration tests. The acceleration responses on top of the building in the controlled case measured under strong wind loads were compared with those in the uncontrolled case numerically simulated by using the wind load deduced from the measured data and a structural model of the building. It is demonstrated that the AMD system shows good control performance in reducing the building accelerations.