• Title/Summary/Keyword: mission station

Search Result 164, Processing Time 0.025 seconds

Self-Interference Cancellation-Aided Relay Beamforming for Multi-Way Relaying Systems (다중방향 릴레이 시스템을 위한 자가간섭 소거 보조 릴레이 빔형성 기법)

  • Le, Anh Duc;Park, Jin Bae;Cho, Yong Ok;Jeong, Min A;Lee, Seong Ro;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.4
    • /
    • pp.378-386
    • /
    • 2013
  • In this paper, we propose a multi-way relaying system, in which N communicating nodes interchange their information one another by the help of a multiple-antenna non-regenerative relay station (RS). While the conventional multi-way relaying requires 2N transmission phases to complete the data exchange, the proposed system completes the mission with N phases composed of one multiple access phase and N-1 broadcast phases. For effective broadcast transmission, the proposed system pairs users for signal transmission with a new RS beamforming matrix not to interfere with the nodes of different pairs and a self-interference canceler at each node. The performance evaluation in terms of the average sum rate shows that the proposed system outperforms the conventional one with more significant gain when the number of RS antennas is comparable to the number of communicating nodes. The proposed schemes can be applicable to marine communications where the ships need to share their information with extended coverage.

Operation Plans of the Satellite Communications System for COMS (통해기 위성통신시스템의 운용계획)

  • Choe, Gyeong-Su;Sin, Cheon-Sik;Lee, Seong-Pal
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.71-75
    • /
    • 2006
  • This paper describes operation plans for satellite communications system (SATCOM) which is consisted of Ka band communication payload, geostationary satellite control system and communication test earth station system for the communication, ocean and meteorological satellite system (COMS). Also this paper describes the communication service and mission plans by each system of the SATCOM, and configurations and functions of the system interface between each system. Especially this paper proposes operational items, functions and their configuration diagrams, touches their operational plans. This paper describes function definitions, configuration diagram and operation plans of the PCS )Payload Control System) for monitor and control of the communication payload and communication service network of the SATCOM.

  • PDF

Analysis on Mission Lifetime and Collision Avoidance of Cubesat Launched from ISS (ISS에서 발사되는 큐브위성의 임무수명 및 충돌회피 분석)

  • Yeom, Seung-Yong;Kim, Hongrae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.413-421
    • /
    • 2015
  • Since the first Cubesat was launched in 2003, there have been more than 230 Cubesats launched so far. Due to their small size and lightweight, Cubesats were launched by utilizing the empty space of regular launch vehicle. However, this launch method has a weakness that has been easily affecting by the schedule of major payloads. As a new solution to this problem, it has been proposed that a robot arm installed on ISS would be used to launch Cubesats. The orbits of Cubesat deployed from the ISS in various angles and directions are analyzed in this paper. We also analyze the possibility of collision between the Cubesat and ISS within the operational orbit of the CubeSat and eventually calculate the optimal angle of a robot arm, which maximizes the lifetime of Cubesat and minimizes the risk of collision between the Cubesat and ISS.

A Study on developing Flight Software for Nano-satellite based on NASA CFS (NASA CFS에 기반한 초소형 위성용 비행소프트웨어 개발에 관한 연구)

  • Choi, Won-sub;Kim, Jin-Hyoung;Kim, Hae-dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.997-1005
    • /
    • 2016
  • Flight software plays an important role in operating satellites, such as processing commands from ground station, controlling satellites and processing mission data. Reliability is the most important thing in flight software and many verifications and tests are needed for assuring it. this causes an increase of cost and period of development. So NASA has developed a reusable flight software platform to apply to their satellite projects. The CFS(Core Flight System) is the very result. We are developing our flight software for a nano-satellite based on NASA CFS. We have tested core services and functions provided in CFS and we have designed and implemented flight software based on these.

Development of Adaptive Ground Control System for Multi-UAV Operation and Operator Overload Analysis (복수 무인기 운용을 위한 적응형 지상체 개발 및 운용자 과부하 분석)

  • Oh, Jangjin;Choi, Seong-Hwan;Lim, Hyung-Jin;Kim, Seungkeun;Yang, Ji Hyun;Kim, Byoung Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.529-536
    • /
    • 2017
  • The general ground control system has control and information display functions for the operation of a single unmanned aerial vehicle. Recently, the function of the single ground control system extends to the operation of multiple UAVs. As a result, operators have been exposed to more diverse tasks and are subject to task overload due to various factors during their mission. This study proposes an adaptive ground control system that reflects the operator's condition through the task overload measurement of multiple UAV operators. For this, the ground control software is developed to control multiple UAVs at the same time, and the simulator with six degree-of-freedom aircraft dynamics is constructed for realistic human-machine-interface experiments by the operators.

Comparison of Global Optimization Methods for Insertion Maneuver into Earth-Moon L2 Quasi-Halo Orbit Considering Collision Avoidance

  • Lee, Sang-Cherl;Kim, Hae-Dong;Yang, Do-Chul;Cho, Dong-Hyun;Im, Jeong-Heum;No, Tae-Soo;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.267-280
    • /
    • 2014
  • A spacecraft placed in an Earth-Moon L2 quasi-halo orbit can maintain constant communication between the Earth and the far side of the Moon. This quasi-halo orbit could be used to establish a lunar space station and serve as a gateway to explore the solar system. For a mission in an Earth-Moon L2 quasi-halo orbit, a spacecraft would have to be transferred from the Earth to the vicinity of the Earth-Moon L2 point, then inserted into the Earth-Moon L2 quasi-halo orbit. Unlike the near Earth case, this orbit is essentially very unstable due to mutually perturbing gravitational attractions by the Earth, the Moon and the Sun. In this paper, an insertion maneuver of a spacecraft into an Earth-Moon L2 quasi-halo orbit was investigated using the global optimization algorithm, including simulated annealing, genetic algorithm and pattern search method with collision avoidance taken into consideration. The result shows that the spacecraft can maintain its own position in the Earth-Moon L2 quasi-halo orbit and avoid collisions with threatening objects.

Korean Astronaut Program and Space Experiment (한국우주인 배출과 우주실험)

  • Kim, Youn-Kyu;Yi, So-Yeon;Ko, San;Kang, Sang-Wook;Lee, Joo-Hee;Choi, Gi-Hyuk
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • This paper entirely explains the Korean astronaut program from astronaut selection to launch and return and introduces technology and results through this program in detail. The Korean astronaut program launched Nov. 2005 with the objectives to develop the manned space technology such as astronaut selection, training and space experiment and to disseminate concerns to the public about the science and space. In 2006 to select the Korean astronauts, the standards for selecting astronauts were set and then the selection processes from 1st stage to 4th stage were performed. In 2007, the 2 Korean astronauts took the astronaut training and the 18 domestic science experiments and 3 international experiments which the Korean astronaut, Dr. Yi, performed in ISS last April were developed. In April 2008, the Korean astronaut was transported to ISS by Soyuz in Baikonur in Kazakhstan and returned to the ground with performing the mission and space experiments. This paper will explain these processes as the above(astronaut's selection, training, space experiment, etc.) in detail.

  • PDF

Evaluation of GPM IMERG Applicability Using SPI based Satellite Precipitation (SPI를 활용한 GPM IMERG 자료의 적용성 평가)

  • Jang, Sangmin;Rhee, Jinyoung;Yoon, Sunkwon;Lee, Taehwa;Park, Kyungwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.29-39
    • /
    • 2017
  • In this study, the GPM (Global Precipitation Mission) IMERG (Integrated Multi-satellitE retrievals for GPM) rainfall data was verified and evaluated using ground AWS (Automated Weather Station) and radar in order to investigate the availability of GPM IMERG rainfall data. The SPI (Standardized Precipitation Index) was calculated based on the GPM IMERG data and also compared with the results obtained from the ground observation data for the Hoengseong Dam and Yongdam Dam areas. For the radar data, 1.5 km CAPPI rainfall data with a resolution of 10 km and 30 minutes was generated by applying the Z-R relationship ($Z=200R^{1.6}$) and used for accuracy verification. In order to calculate the SPI, PERSIANN_CDR and TRMM 3B42 were used for the period prior to the GPM IMERG data availability range. As a result of latency verification, it was confirmed that the performance is relatively higher than that of the early run mode in the late run mode. The GPM IMERG rainfall data has a high accuracy for 20 mm/h or more rainfall as a result of the comparison with the ground rainfall data. The analysis of the time scale of the SPI based on GPM IMERG and changes in normal annual precipitation adequately showed the effect of short term rainfall cases on local drought relief. In addition, the correlation coefficient and the determination coefficient were 0.83, 0.914, 0.689 and 0.835, respectively, between the SPI based GPM IMERG and the ground observation data. Therefore, it can be used as a predictive factor through the time series prediction model. We confirmed the hydrological utilization and the possibility of real time drought monitoring using SPI based on GPM IMERG rainfall, even though results presented in this study were limited to some rainfall cases.

COMMISSIONING RESULT OF THE KSTAR HELIUM REFRIGERATION SYSTEM

  • Park, Dong-Seong;Chang, Hyun-Sik;Joo, Jae-Joon;Moon, Kyung-Mo;Cho, Kwang-Woon;Kim, Yang-Soo;Bak, Joo-Shik;Cho, Myeon-Chul;Kwon, Il-Keun;Andrieu, Frederic;Beauvisage, Jerome;Desambrois, Stephane;Fauve, Eric
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.467-476
    • /
    • 2008
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (RRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K without liquid nitrogen ($LN_2$) pre-cooling has been manufactured and installed. The main components of the KST AR helium refrigeration system (HRS) can be classified into the warm compression system (WCS) and the cryogenic devices according to the operating temperature levels. The process helium is compressed from 1 bar to 22 bar passing through the WCS and is supplied to cryogenic devices. The main components of cryogenic devices are consist of cold box (C/B) and distribution box (D/B). The C/B cool-down and make the various cryogenic helium for the KSTAR Tokamak and the various cryogenic helium is distributed by the D/B as per the KSTAR requirement. In this proceeding, we will present the commissioning results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

A Point Navigation Guidance Law for Unmanned Helicopter Using Predicted Position (위치 예측에 기반한 무인헬기 점항법 유도법칙 개발)

  • Kim, Seong-Pil;Lee, Jang-Ho;Kim, Bong-Ju;Gwon, Hyeong-Jun;Kim, Eung-Tae;An, Lee-Gi
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • This paper presents a new point navigation guidance law which is useful for unmanned helicopters. Predicting the future position, the guidance law generates velocity and heading commands, which are used as input to autopilot. This method differs from conventional guidance law in that it reorients the direction of flight velocity vector directly, not by bank angle indirectly. For flight tests, we have developed a flight control system for a R/C helicopters. The system consists of a flight control computer, navigation sensors, and a ground station The results of the test show that the proposed law guides a unmanned helicopter along a line path within a given area. In the future, we are planning to extend the guidance law to the mission of path following. i.e., waypoint navigation.

  • PDF