DOI QR코드

DOI QR Code

Self-Interference Cancellation-Aided Relay Beamforming for Multi-Way Relaying Systems

다중방향 릴레이 시스템을 위한 자가간섭 소거 보조 릴레이 빔형성 기법

  • 레덕안 (경희대학교 전자전파공학과) ;
  • 박진배 (경희대학교 전자전파공학과) ;
  • 조용옥 (목포대학교 정보전자공학과) ;
  • 정민아 (목포대학교 컴퓨터공학과) ;
  • 이성로 (목포대학교 정보전자공학과) ;
  • 김윤희 (경희대학교 전자전파공학과)
  • Received : 2013.01.14
  • Accepted : 2013.03.08
  • Published : 2013.04.30

Abstract

In this paper, we propose a multi-way relaying system, in which N communicating nodes interchange their information one another by the help of a multiple-antenna non-regenerative relay station (RS). While the conventional multi-way relaying requires 2N transmission phases to complete the data exchange, the proposed system completes the mission with N phases composed of one multiple access phase and N-1 broadcast phases. For effective broadcast transmission, the proposed system pairs users for signal transmission with a new RS beamforming matrix not to interfere with the nodes of different pairs and a self-interference canceler at each node. The performance evaluation in terms of the average sum rate shows that the proposed system outperforms the conventional one with more significant gain when the number of RS antennas is comparable to the number of communicating nodes. The proposed schemes can be applicable to marine communications where the ships need to share their information with extended coverage.

본 논문은 N 통신노드들이 다중 안테나 비재생 릴레이국의 협력으로 서로 데이터를 교환하는 다중방향 릴레이 시스템을 제안한다. 기존의 단방향 릴레이를 적용한 다중방향 통신의 경우 2N 전송 단계가 필요하나 제안하는 다중방향 릴레이 시스템은 단일 다중접속 단계와 N-1 방송 단계로 구성된 총 N 전송 단계만 필요로 한다. 특히 효율적인 방송 단계 전송을 위해 통신노드들을 쌍을 짓고 쌍이 아닌 통신노드들에게 간섭을 주지 않는 새로운 릴레이 빔형성 행렬과 통신노드 자가간섭 소거기를 제안한다. 평균 합 전송률로 성능을 평가한 결과, 제안 기법이 기존 기법의 성능을 향상시키며 그 이득은 릴레이 노드 안테나 수와 통신노드 수가 비슷할 때 더 커짐을 볼 수 있다. 이러한 제안 기법은 여러 선박간의 정보를 공유할 필요가 있는 해양 통신 환경에서 통신 거리를 확장하는 데 효과적으로 적용할 수 있을 것으로 기대된다.

Keywords

References

  1. EUREKA, E! 3194 FORCE8, Retrieved Apr, 16, 2013, from http://www.eurekanetwork.org
  2. Y.-M. Park, W.-Y. Lee, S.-R. Lee, and Y. L. Lee, "Energy efficient transmisson parameters analysis of TDMA based HR-WPAN system for ship environment," J. KICE, vol. 34, no. 10, pp. 170-174, Oct. 2009.
  3. L. Mu, R. Kumar, and A. Prinz, "An integrated wireless communication architecture for maritime sector," in Proc. 4th Int. Workshop Multiple Access Commun. (MACOM) 2011, pp. 193-205, Trento, Italy.
  4. OLDSAILOR, Mobile WiMAX: BATS ship to ship wireless broadband communications tracking system, Retrieved AUG, 7, 2009, from http://www.marinebuzz.com/2009/08/07/mobile-wimax-bats-demonstrates-ship-to-ship-wireless -broadband-communications-tracking-system/
  5. X. Su, B. Hui, K. H. Chang, and G. Jin, "Application of 3GPP LTE and IEEE 802.11 p systems to ship ad-hoc network with the existence of ISI" J. KICS, vol. 36, no. 12, pp. 1106-1114, Dec. 2012.
  6. E. C. van der Meulen, "A survey of multi-way channels in information theory," IEEE Trans. Inform. Theory, vol. 23, no. 1, pp. 1-37, Jan. 1977. https://doi.org/10.1109/TIT.1977.1055652
  7. K. Eswaran and M. Gastpar, "Achievable rates for conferencing multiway channels," in Proc. IEEE Int. Symp. Inform. Theory, pp. 1398-1402, Toronto, Canada, 2008.
  8. T. M. Cover and A. A. El Gamal, "Capacity theorems for the relay channels," IEEE Trans. Inform. Theory, vol. 25, no. 5, pp. 572-584, Sep. 1979. https://doi.org/10.1109/TIT.1979.1056084
  9. J. N. Laneman, D. N. C. Tse, and G. W. Wornell, "Cooperative diversity in wireless networks: efficient protocols and outage behavior," IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004. https://doi.org/10.1109/TIT.2004.838089
  10. B. Rankov and A. Wittneben, "Spectral efficient protocols for half-duplex relay channels," IEEE J. Sel. Areas Commun., vol. 25, no. 2, pp. 379-389, Feb. 2007. https://doi.org/10.1109/JSAC.2007.070213
  11. M. Chen and A. Yener, "Multiuser two-way relaying for interference limited systems," in Proc. IEEE Int. Conf. Commun., pp. 3883-3887, Beijing, China, May 2008.
  12. A. U. T. Amah and A. Klein, "Pair-aware transceive beamforming for non-regenerative multi-user two-way relaying," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 2506-2509, Dallas, U.S.A., Mar. 2010.
  13. J. Joung and A. H. Sayed, "Multiuser two-way amplify-and-forward relay processing and power control methods for beamforming system", IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1833-1846, Mar. 2010. https://doi.org/10.1109/TSP.2009.2038668
  14. E. Yilmaz, R. Zakhour, D. Gesbert, and R. Knopp, "Multi-pair two-way relay channel with multiple antenna relay station," in Proc. IEEE Int. Conf. Commun., pp. 1-5, Cape Town, South Africa, May 2010.
  15. A. U. T. Amah and A. Klein, "Non-regenerative multi-way relaying with linear beamforming," in Proc. IEEE Int. Symp. Personal Indoor Mobile Radio Commun., pp. 1843-1847, Tokyo, Japan, Sep. 2009.
  16. A. U. T Amah and A. Klein, "A transceive strategy for regenerative multi-antenna multi-way relaying," in Proc. IEEE Workshop Comput. Advances Multi-Sensor Array Process., pp. 352-355, Aruba, Venezuela, Dec. 2009.
  17. C. Hausl, O. Isan, and F. Rossetto, "Resource allocation for asymmetric multi-way relay communication over orthogonal channels," EURASIP J. Wireless Commun. Network, vol. 2012, no. 20, pp. 1-12, Jan. 2012. https://doi.org/10.1186/1687-1499-2012-1
  18. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," IEEE Trans. Signal Process., vol. 52, no. 2, pp. 461-471, Feb. 2004. https://doi.org/10.1109/TSP.2003.821107