• Title/Summary/Keyword: miscibility.

Search Result 200, Processing Time 0.034 seconds

Miscibility of Poly(trimethylene terephthalste)/Poly(ethylene naphthalate) Blends (Poly(trimethylene terephthalate)/Poly(ethylene naphthalate) 블렌드의 혼화성)

  • 최재원;김영호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.70-73
    • /
    • 2003
  • 최근 들어 poly(trimethylene terephtha)ate)(PTT)를 폴리에스터계 고분자들인 PET, PTN, PBN 등과 블렌드하고 이들의 특성 변화에 대해 검토한 결과가 많이 발표되고 있다. PTT를 PET나 PTN과 블렌드시키면 혼화성이 없으나, 이들 블렌드물을 용융시키면 점차 하나의 T$_{g}$를 나타내어 혼화성을 갖는다[1-3]. 반면에 PTT와 PBN을 블렌드시키면 처음부터 혼화성이 존재한다[4]. 이같이 PTT와 혼합되는 고분자의 종류에 따라 혼화성이 달라지는데, 본 연구는 PTT와 poly(ethylene naphthalate)(PEN)을 블렌드시키면 혼화성이 어떻게 되는가를 검토한 것이다. (중략)

  • PDF

Preparation and Characterization of Poly(vinyl alcohol)/ Sodium Alginate Blend (Poly(vinyl alcohol)/ Sodium Alginate 블렌드의 제조 및 특성)

  • Koo, Won-Mi;Jung, Du-Kam;Lee, Young-Hee;Kim, Han-Do
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.25-28
    • /
    • 2001
  • Polymer blending constitutes a most useful method for the improvement or modification of the physicochemical properties of polymeric materials. Some of the polymer blends exhibit unusual properties, unexpected from homopolymers. An important property of a polymer blend is the miscibility of its component, because it affects the mechanical properties, the morphology, its permeability and degradation [1, 2]. (omitted)

  • PDF

폴리프로필렌의 친수화 개질 -Polypropylene-poly(vinyl alcohol-co-ethylene) 블렌드의 특성-

  • 임상규;손태원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1996.04a
    • /
    • pp.64-68
    • /
    • 1996
  • PP-EVOH(poly(vinyl alchol-co-ethylene)) blends were prepared by the mixing of polypropylene and poly(vinyl alcohol-co-ethylene) containing 38mol% of ethylene units (EVOH38) at melt state above PP melting temperature. The materials were characterized by using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and contact angle measurement to detemine the glass transition, meltin, decomposition temperatures, and wettability respectively. From the results, PP-EVOH(poly(vinyl alcohol-co-ethylene)) blends exgibits partial miscibility.

  • PDF

Poly(4-vinylpyridine)/Vinyl Acetate-Vinyl Alcohol Copolymer Blends : 9. Phase. Behavior (폴리(4-비닐피리딘)/비닐아세테이트-비닐알코올 공중합체 블렌드 :2. 상 거동)

  • Lee, Joon-Youl;Choi, Dong-Hoon;Lee, Hyeok
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.649-656
    • /
    • 2001
  • Miscibility of poly(4-vinylpyridine) (P4VP) blends with poly(vinyl acetate-co-vinyl alcohol) (VAc-VAL copolymers) was investigated as a function of comonomer composition of VAc-VAL copolymers. Differential scanning calorimetry (DSC) and thermo-optical microscopic (TOM) analysis confirmed that P4VP is miscible with VAc-VAL copolymers containing more than 30 mole% VAL. Fourier transform inflated (FT-IR) spectroscopic analysis revealed that the strong intermolecular hydrongen bonding interaction between the vinylpyridine and VAL hydroxyl group was formed. Theoretical phase diagram was constructed by the calculation using the Association model, a thermodynamic model for hydrogen-bonded polymer blend systems developed by Coleman et al. The calculated theoretical binodal phase diagrams were in good agreement with the experimentally determined cloud point curves.

  • PDF

Flow and Mechanical Properties of Linear and Branched Polycarbonates Blends (선형 및 분지화된 폴리카보네이트 블렌드의 기계적 성질과 유동특성)

  • 류민영;이재식;배유리
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.38-47
    • /
    • 2000
  • A study of linear and branched polycarbonates blend system is presented. Flow and mechanical properties, and miscibility were studied for the blends of various compositions. No phase separations were observed in the blend systems. The mechanical properties of blends were examined through tensile strength, tensile modulus, flexural strength, flexural modulus and impact strength. Melt viscosity, storage and loss moduli of the blends with various compositions were examined at various temperatures. The dependence of viscosity on molecular weight was also presented. Flow properties of the blends showed significant variations however, mechanical properties were relatively independent of the compositions. As the content of branched polycarbonate increased, the dependence of viscosity on molecular weight and shear thinning behavior became more marked. Therefore the blend systems which have same mechanical properties but different flow properties can be obtained.

  • PDF

Mechanical Properties and Morphology of Polyamide 6/Maleated Polypropylene Blends (폴리아미드6/반응성 폴리프로필렌(PA6/PP-g-MA) 블렌드의 기계적 특성과 모폴로지)

  • Koh, Jae Song;Jang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1136-1140
    • /
    • 1999
  • Melt blends of polymide 6(PA6) and polypropylene grafted maleic anhydride(PP-g-MA) were prepared to study the influence of chemical reaction between the two polymer components. The tensile, flexural, izod impact, dynamic mechanical properties and phase structure were investigated for this blend system. Tensile strength and modulus of the blends showed synergetic effect upon blending of two polymer components. Flexural properties maintained the value of numerical mean calculated from the weight ratio of two components. Also, notched izod impact strengths showed maximum in th PA6/PP-g-MA 50/50 wt % blend. From the change of tan ${\delta}$ observed, we confirmed the increase of miscibility in this blend system by chemical reaction between PA6 and PP-g-MA. Blends of good impact resistance could be obtained when the PP-g-MA particles of $2{\mu}m$ was dispersed in the PA6 matrix.

  • PDF

Effect of SMA on the Interfacial Shear Strength for Single Glass Fiber and PC/SAN Blends (SMA가 PC/SAN 블렌드와 유리섬유간의 계면결합력에 미치는 영향)

  • Lee, Ui-Hwan;Nam, Gi-Jun;Lee, Jae-Uk
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.512-520
    • /
    • 2001
  • One of the most important factors which affect the mechanical properties of fiber-reinforced composite materials is the interfacial shear strength (IFSS). The IFSS of glass fiber and polycarbonate (PC)/styrene-co-acrylonitrile (SAN) blend system has been measured by the single fiber fragmentation test (SFFT). SAN contents were varied up to 30 wt% and the IFSS increased with the SAN contents. Styrene-co-maleic anhydride (SMA) was used as the compatibilizer and the glass fiber was surface treated with organosilane coupling agents. Addition of small amount of SMA in PC/SAN blend improved the IFSS by chemical bonding between maleic anhydride and silanol. The optimum MA content was 0.4 wt% of total matrix contents. Also, IFSS was greatly affected by the miscibility condition of SAN/SMA blends, which depended on the copolymer composition of SAN and SMA. It was found out that, higher IFSS could be obtained when the SAN/SMA blend was in miscible pairs. In case of SAN/SMA miscible pairs, the IFSS depended on the MA content in total matrix, not on the MA content in SMA.

  • PDF

Preparation of Silicon-Based Hybrid Gels with POSS Additives and Their Application to LED Encapsulants (POSS계 첨가제를 가지는 실리콘 젤의 제조와 LED 봉지재 응용)

  • Eun, Hee-Chun;Im, Hee-Eun;Lee, Yun Sang;Kwark, Young-Je
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.311-316
    • /
    • 2015
  • Densely structured polyhedral oligomeric silsesquioxane (POSS) was employed as an additive to enhance hardness of silicon-based hybrid gels for LED encapsulants. To improve the miscibility of POSS and polysiloxane resin, alkyl or oligosiloxane branches were introduced to POSS moiety. Platinum-catalyzed hydrosilylation reactions were used to attach branches of 1-decanol, 9-decen-1-ol, and vinyl-terminated oligosiloxane to the POSS molecules. Alkyl-branched POSSs (decyl-POSS and decenyl-POSS) were immiscibile with polysiloxane resin and generated gels with low transparency and low hardness values. On the other hand, oligosiloxane-branched POSS (Siloxy-POSS) showed good miscibility with polysiloxane resin to give gels with high transparency. However, the prepared gels did not show noticeable improvement in hardness compared to the gels without the POSS additive.

Effect of Moisture on Molecular Motions of Chitosan/Polycaprotactam Blends (키토산/카프로락탐 혼합체에 대한 수분의 영향)

  • Liao Shen-Kun;Hung Chi-Chih;Lin Ming-Fung
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.433-443
    • /
    • 2004
  • The membranes of the blends of chitosan and polycaprolactarn (PA6) were prepared in formic acid. FT-IR data revealed that hydrogen bonding between amide and hydroxyl groups of chitosan and PA6, respectively, was formed. Thermogravimetric analysis demonstrated that the blend samples contain water. DMA results showed that the dissipation of water in the samples significantly reduced the storage modulus (E'). The mechanical loss tangent (tan $\delta$) data of the blend samples showed the $\beta$d loss peak around $0^{\circ}C$. The blend samples were completely dried in a vacuum and then exposed to high moisture to absorb water which would cause, so called, w-bridges between the molecules. The E' data of these regained samples increased abnormally and additional loss peak appeared on the shoulder of the peak around $50^{\circ}C$. Under dry condition, the samples with a blend ratio of 40/60 for chitosan/PA6 displayed a better miscibility between two components.