As the Internet use explodes recently, the malicious attacks and hacking for a system connected to network occur frequently. For such reason, lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.
Along with the industry growth, engineering colleges in Korea has have a quantitative growth. Many of the policy promotions and budgets for engineering colleges from the government are supported. And the various monitoring methods to verify their achievement have demanded. This paper deals with the construction of engineering educational statistics system in Korea. It named Korea Engineering Data Management System(K-EDMS). This system is based on the data mining tool and supports data-based decision making for an advanced engineering education service. This paper presents related researches of case studies. Then, we have designed K-EDMS, and constructed 157 cases for engineering colleges of the year 2014.
네트워크 공격은 인터넷의 발달과 함께 유형도 다양하고 새로워지고 있다. 기존의 침입탐지 시스템들은 알려진 공격의 시그네처를 기반으로 탐지하기 때문에 알려지지 않거나 변형된 공격을 탐지하고, 대응하기 위해서는 많은 노력과 비용이 필요하다. 본 논문에서는 네트워크 프로토콜 속성 분석을 통해 알려지지 않거나 변형된 네트워크 공격을 예측할 수 있는 마이닝 프로토타입 시스템을 설계 하고 구현 하였다. 네트워크 프로토콜 속성을 분석하기 위해서 연관규칙과 빈발에피소드 기법을 사용하였으며, 수집된 네트워크 프로토콜은 TCP, UDP, ICMP와 통합된 형태의 스키마로 저장한다. 본 실험을 통해서 각 프로토콜별로 발생 가능한 네트워크 공격 유형을 예측할 수 있는 규칙들을 생성한다. 마이닝 프로토타입은 침입탐지 시스템에서 새로운 공격에 대응하기 위한 보조적인 .도구로서 유용하게 사용될 수 있다.
지금까지 이러닝 시스템을 통해서 학습 능력을 향상시키는 기술이 많이 나와 있다. 대부분의 이러닝 시스템에서 학습자들은 강의 자료와 학습문제를 통해서 학습을 한다. 그러나, 때로는 학습자간의 자료공유나 토론을 통해서 학습능력과 학습 의욕을 향상시킬 수 있다. 이 경우에 일반적으로 게시판을 통해서 학습 자료를 공유하거나 MSN과 같은 메신저를 사용하여 학습자들끼리 토론 및 자료를 공유한다. 하지만, 이와 같은 형태의 학습 공유 유형은 학습 자료가 주제별로 분류되어 있지 않기 때문에 학습자가 관련 자료를 검색하는 일이 쉽지 않다. 그 결과 학습에 크게 도움이 되지 않는다. 대부분의 텍스트 마이닝 기술은 문서데이터의 집합으로부터 요약 데이터를 추출하거나 유사한 문서의 집합을 분류하는 기술이다. 따라서, 본 논문에서 학습자가 학습능력을 향상시킬 수 있도록 이러닝 시스템에 텍스트 마이닝 기술을 적용하여 효과적으로 이러닝 자료를 분류하여 학습자에게 도움이 되는 시스템을 구현하고 평가하였다.
해상에서의 시추작업은 해저면을 통해서 시추되는 유정에서 이루어지는 일련의 기계적 프로세스라 할 수 있다. 해양 시추설비는 해저에 매장된 석유나 가스의 매장량 확인을 위한 테스트 유정(well)과 이를 경제성 있는 생산용 유정으로 만들기 위해 사용되는 시설로 해양에서의 시추작업은 대부분 타 지역으로의 이동을 위해 이동식으로 제작되며, 작업 해역의 수심에 따라 크게 리그(jack-up, semi-submersible)와 드릴십(drillship)으로 구분할 수 있다. 최근에는 석유와 가스의 개발을 위한 시추작업이 급진적으로 심해로 옮겨가고 있으며 작업 가능 수심이 3,000 m에 이르고 있다. 본 논문에서는 이러한 해상 시추설비에 탑재되는 대표적 해양플랜트 기자재인 시추시스템을 소개하고 최근의 기술개발 동향을 알아보고자 한다.
최근 빅데이터 분야의 높아진 관심과 더불어 빅데이터의 처리를 통한 응용 분야에 대한 관심도 높아지고 있다. 개인의 감성을 파악할 수 있는 오피니언마이닝은 사용자 개인 맞춤 서비스 제공 분야에서 많이 이용되고 있는 빅데이터 처리 기법이다. 이를 바탕으로 본 논문에서는 사용자들의 장소에 대한 텍스트 형태의 리뷰를 오피니언마이닝 기법으로 처리하고 k-means 클러스터링 작업을 통해 사용자의 감성을 분석하였다. 클러스터링 작업으로 분류된 비슷한 범주의 감성을 가진 사용자들끼리 동일한 수치 값을 부여한다. 부여된 수치 값으로 협업 필터링 추천 시스템을 이용해 선호도를 예측하고 예측 값이 높은 장소 순으로 지도위에 마커와 함께 내용을 표시하여 사용자에게 추천내용을 보여줄 수 있는 방안을 제안하였다.
Background: Collisions involving workers and mobile machines continue to be a major concern in underground coal mines. Over the last 30 years, these collisions have resulted in numerous injuries and fatalities. Recently, the Mine Safety and Health Administration (MSHA) proposed a rule that would require mines to equip mobile machines with proximity detection systems (PDSs) (systems designed for automated collision avoidance). Even though this regulation has not been enacted, some mines have installed PDSs on their scoops and hauling machines. However, early implementation of PDSs has introduced a variety of safety concerns. Past findings show that workers' trust can affect technology integration and influence unsafe use of automated technologies. Methods: Using a mixed-methods approach, the present study explores the effect that factors such as mine of employment, age, experience, and system type have on workers' trust in PDSs for mobile machines. The study also explores how workers are trained on PDSs and how this training influences trust. Results: The study resulted in three major findings. First, the mine of employment had a significant influence on workers' trust in mobile PDSs. Second, hands-on and classroom training was the most common types of training. Finally, over 70% of workers are trained on the system by the mine compared with 36% trained by the system manufacturer. Conclusion: The influence of workers' mine of employment on trust in PDSs may indicate that practitioners and researchers may need to give the organizational and physical characteristics of each mine careful consideration to ensure safe integration of automated systems.
웹 기반하에서 사용자의 질의에 대한 효율적인 검색결과를 제공하기 위하여 다양한 검색 알고리즘들이 개발되어 왔으며, 이러한 알고리즘들의 대부분은 사용자의 선호도나 편의성을 고려하였다. 그러나 지금까지 개발된 검색 알고리즘들은 일반적으로 웹이라는 수평의 비계층적인 웹 환경에서 개발된 것으로서 기업의 전사적 네트워크와 같이 계층적이고 기능적으로 복잡하게 구성되어 있는 웹 기반 환경에서는 적용하기가 힘든 실정이다. 본 논문에서는 이러한 특수한 웹 기반 환경하에서 사용자에게 효율적으로 마이닝 결과를 제공할 수 있는 멀티-에이전트 기반의 웹 마이닝 시스템을 제안한다. 이를 위해 우리는 계층적 웹 기반 환경이라는 네트워크 모델을 제시하며, 제시된 웹 환경에서 적용할 수 있는 4개의 협력 에이전트와 14개의 프로세스 모듈을 가진 멀티-에이전트 기반의 웹 마이닝 시스템을 설계한다. 그리고 각 에이전트에 대한 세부기능을 계층적 환경을 고려하여 모듈별로 설명하며 특히, 새로운 머징 에이전트와 개선된 랭킹 알고리즘을 그래프 이론을 적용하여 제안한다.
본 연구의 목적은 효율적인 기계경비시스템 오경보 이벤트 분석을 위해 가장 적합한 데이터마이닝 기법을 도출하는데 있다. 이를 위해 기계경비시스템 오경보의 발생원인을 살펴보고, 오경보 시의 출동건수, 오경보율 그리고 오경보원인의 통계자료를 토대로한 데이터를 데이터마이닝 프로그램인 WEKA에 맞게 변환시켜 여러 알고리즘에 적용 및 분석하였다. 본 논문에서는 적합한 데이터마이닝 기법을 찾기 위해 Decision Tree, Naive Bayes, BayesNet Apriori, J48Tree 알고리즘을 활용하였고, 분석을 통해 생성된 가장 높은 값을 도출하여 해당 알고리즘의 적용 가능성을 확인하였다. 이와 같은 연구를 통해 효율적으로 기계경비시스템의 오경보를 예측하고, 오경보에 대한 보다 효율적인 대처방안을 모색할 수 있음을 보여주었다.
Recently, many large organizations have multiple data sources (MDS') distributed over different branches of an interstate company. Local patterns analysis has become an effective strategy for MDS mining in national and international organizations. It consists of mining different datasets in order to obtain frequent patterns, which are forwarded to a centralized place for global pattern analysis. Various synthesizing models [2,3,4,5,6,7,8,26] have been proposed to build global patterns from the forwarded patterns. It is desired that the synthesized rules from such forwarded patterns must closely match with the mono-mining results (i.e., the results that would be obtained if all of the databases are put together and mining has been done). When the pattern is present in the site, but fails to satisfy the minimum support threshold value, it is not allowed to take part in the pattern synthesizing process. Therefore, this process can lose some interesting patterns, which can help the decider to make the right decision. In such situations we propose the application of a probabilistic model in the synthesizing process. An adequate choice for a probabilistic model can improve the quality of patterns that have been discovered. In this paper, we perform a comprehensive study on various probabilistic models that can be applied in the synthesizing process and we choose and improve one of them that works to ameliorate the synthesizing results. Finally, some experiments are presented in public database in order to improve the efficiency of our proposed synthesizing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.