• Title/Summary/Keyword: mining system

Search Result 1,851, Processing Time 0.025 seconds

6G Technology Competitiveness and Network Analysis: Focusing on GaN Integrated Circuit Patent Data (6G의 기술경쟁력 및 네트워크 분석: GaN 집적회로 특허 데이터 중심)

  • Woo-Seok Choi;Jin-Yong Kim;Jung-Hwan Lee;Sang-Hyun Choi
    • Journal of Industrial Convergence
    • /
    • v.21 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • Expectations for wireless communication technology are rising as a base technology that promotes innovation in various industries in line with the paradigm of digital transformation in the 21st century beyond the stage of being used only for communication service itself. In this study, in order to compare 6G technological competitiveness between Korea and leading countries, technological competitiveness was confirmed through PFS, CPP, and network analysis based on GaN Integrated Circuit patent data. Korea's 6G technological competitiveness was 0.62 in PFS and 3.93 in CPP, which were 32.8% and 19.9%, respectively, compared to leading countries. In addition, as a result of network analysis, the collaboration rate in the 6G field was 7.2%, and the collaboration ecosystem was very insufficient in most countries. In contrast, it was confirmed that Korea, unlike leading countries, has established a small-scale collaboration ecosystem linked by industry and academia. Thus, it is necessary to establish a strategy for 6G communication technology at the national level so that communication technology can be advanced based on a relatively well-established collaborative ecosystem.

Empirical correlation for in-situ deformation modulus of sedimentary rock slope mass and support system recommendation using the Qslope method

  • Yimin Mao;Mohammad Azarafza;Masoud Hajialilue Bonab;Marc Bascompta;Yaser A. Nanehkaran
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.539-554
    • /
    • 2023
  • This article is dedicated to the pursuit of establishing a robust empirical relationship that allows for the estimation of in-situ modulus of deformations (Em and Gm) within sedimentary rock slope masses through the utilization of Qslope values. To achieve this significant objective, an expansive and thorough methodology is employed, encompassing a comprehensive field survey, meticulous sample collection, and rigorous laboratory testing. The study sources a total of 26 specimens from five distinct locations within the South Pars (known as Assalouyeh) region, ensuring a representative dataset for robust correlations. The results of this extensive analysis reveal compelling empirical connections between Em, geomechanical characteristics of the rock mass, and the calculated Qslope values. Specifically, these relationships are expressed as follows: Em = 2.859 Qslope + 4.628 (R2 = 0.554), and Gm = 1.856 Qslope + 3.008 (R2 = 0.524). Moreover, the study unravels intriguing insights into the interplay between in-situ deformation moduli and the widely utilized Rock Mass Rating (RMR) computations, leading to the formulation of equations that facilitate predictions: RMR = 18.12 Em0.460 (R2 = 0.798) and RMR = 22.09 Gm0.460 (R2 = 0.766). Beyond these correlations, the study delves into the intricate relationship between RMR and Rock Quality Designation (RQD) with Qslope values. The findings elucidate the following relationships: RMR = 34.05e0.33Qslope (R2 = 0.712) and RQD = 31.42e0.549Qslope (R2 = 0.902). Furthermore, leveraging the insights garnered from this comprehensive analysis, the study offers an empirically derived support system tailored to the distinct characteristics of discontinuous rock slopes, grounded firmly within the framework of the Qslope methodology. This holistic approach contributes significantly to advancing the understanding of sedimentary rock slope stability and provides valuable tools for informed engineering decisions.

Developing a deep learning-based recommendation model using online reviews for predicting consumer preferences: Evidence from the restaurant industry (딥러닝 기반 온라인 리뷰를 활용한 추천 모델 개발: 레스토랑 산업을 중심으로)

  • Dongeon Kim;Dongsoo Jang;Jinzhe Yan;Jiaen Li
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.31-49
    • /
    • 2023
  • With the growth of the food-catering industry, consumer preferences and the number of dine-in restaurants are gradually increasing. Thus, personalized recommendation services are required to select a restaurant suitable for consumer preferences. Previous studies have used questionnaires and star-rating approaches, which do not effectively depict consumer preferences. Online reviews are the most essential sources of information in this regard. However, previous studies have aggregated online reviews into long documents, and traditional machine-learning methods have been applied to these to extract semantic representations; however, such approaches fail to consider the surrounding word or context. Therefore, this study proposes a novel review textual-based restaurant recommendation model (RT-RRM) that uses deep learning to effectively extract consumer preferences from online reviews. The proposed model concatenates consumer-restaurant interactions with the extracted high-level semantic representations and predicts consumer preferences accurately and effectively. Experiments on real-world datasets show that the proposed model exhibits excellent recommendation performance compared with several baseline models.

Export Control System based on Case Based Reasoning: Design and Evaluation (사례 기반 지능형 수출통제 시스템 : 설계와 평가)

  • Hong, Woneui;Kim, Uihyun;Cho, Sinhee;Kim, Sansung;Yi, Mun Yong;Shin, Donghoon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.109-131
    • /
    • 2014
  • As the demand of nuclear power plant equipment is continuously growing worldwide, the importance of handling nuclear strategic materials is also increasing. While the number of cases submitted for the exports of nuclear-power commodity and technology is dramatically increasing, preadjudication (or prescreening to be simple) of strategic materials has been done so far by experts of a long-time experience and extensive field knowledge. However, there is severe shortage of experts in this domain, not to mention that it takes a long time to develop an expert. Because human experts must manually evaluate all the documents submitted for export permission, the current practice of nuclear material export is neither time-efficient nor cost-effective. Toward alleviating the problem of relying on costly human experts only, our research proposes a new system designed to help field experts make their decisions more effectively and efficiently. The proposed system is built upon case-based reasoning, which in essence extracts key features from the existing cases, compares the features with the features of a new case, and derives a solution for the new case by referencing similar cases and their solutions. Our research proposes a framework of case-based reasoning system, designs a case-based reasoning system for the control of nuclear material exports, and evaluates the performance of alternative keyword extraction methods (full automatic, full manual, and semi-automatic). A keyword extraction method is an essential component of the case-based reasoning system as it is used to extract key features of the cases. The full automatic method was conducted using TF-IDF, which is a widely used de facto standard method for representative keyword extraction in text mining. TF (Term Frequency) is based on the frequency count of the term within a document, showing how important the term is within a document while IDF (Inverted Document Frequency) is based on the infrequency of the term within a document set, showing how uniquely the term represents the document. The results show that the semi-automatic approach, which is based on the collaboration of machine and human, is the most effective solution regardless of whether the human is a field expert or a student who majors in nuclear engineering. Moreover, we propose a new approach of computing nuclear document similarity along with a new framework of document analysis. The proposed algorithm of nuclear document similarity considers both document-to-document similarity (${\alpha}$) and document-to-nuclear system similarity (${\beta}$), in order to derive the final score (${\gamma}$) for the decision of whether the presented case is of strategic material or not. The final score (${\gamma}$) represents a document similarity between the past cases and the new case. The score is induced by not only exploiting conventional TF-IDF, but utilizing a nuclear system similarity score, which takes the context of nuclear system domain into account. Finally, the system retrieves top-3 documents stored in the case base that are considered as the most similar cases with regard to the new case, and provides them with the degree of credibility. With this final score and the credibility score, it becomes easier for a user to see which documents in the case base are more worthy of looking up so that the user can make a proper decision with relatively lower cost. The evaluation of the system has been conducted by developing a prototype and testing with field data. The system workflows and outcomes have been verified by the field experts. This research is expected to contribute the growth of knowledge service industry by proposing a new system that can effectively reduce the burden of relying on costly human experts for the export control of nuclear materials and that can be considered as a meaningful example of knowledge service application.

Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang areas, Korea (영월, 정선 및 평창지역 폐 석탄광 산성광산배수의 환경오염 평가)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.111-121
    • /
    • 2003
  • The objective of this study is to investigate the physical and chemical properties for environmental assessment of water system affected by acid mine drainage (AMD) from coal mining activities in the Youngwol, Jungseon and Pyungchang areas in Korea. During November 2000 to July 2002, 6 times of water samples were collected season-ally from acid mine drainage and nearby streams at 13 coal mines in the study area. The physical and chemical properties including pH, Eh, TDS, salinity, bicarbonates and DO were measured in the field. Eighteen cations includ-ing Al, Ca, Fe, Mg, Mn and Zn, and 6 anions including nitrates and sulfates were also analyzed by ICP-AES and If, respectively. Acid water from the Jungam coal mine has typical characteristics of AMD with very low pH(3∼4) and high TDS(1,000∼5,000 mg/1). Relatively high concentrations(mg/kg) of heavy meals, especially for Al(380), Fe(80), Mn(44) and Zn(8), were found in water samples from the Jungam coal mine area. Water samples from the Seojin, Sebang and Sungjin coal mines also contained over 50 mg/l of Al, >100 mg/1 of Fe and )10 mg/1 of Mn. In addition to anioins, over 1,000 mg/l of sulfate was found in several water samples. Seasonally, the concentrations of metals and sulfates varied; wet season samples were relatively higher in metals and sulfates than dry season samples. It is needed to establish the proper remediation and environmental monitoring of the AMD continuously.

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

Keyword Network Analysis for Technology Forecasting (기술예측을 위한 특허 키워드 네트워크 분석)

  • Choi, Jin-Ho;Kim, Hee-Su;Im, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.227-240
    • /
    • 2011
  • New concepts and ideas often result from extensive recombination of existing concepts or ideas. Both researchers and developers build on existing concepts and ideas in published papers or registered patents to develop new theories and technologies that in turn serve as a basis for further development. As the importance of patent increases, so does that of patent analysis. Patent analysis is largely divided into network-based and keyword-based analyses. The former lacks its ability to analyze information technology in details while the letter is unable to identify the relationship between such technologies. In order to overcome the limitations of network-based and keyword-based analyses, this study, which blends those two methods, suggests the keyword network based analysis methodology. In this study, we collected significant technology information in each patent that is related to Light Emitting Diode (LED) through text mining, built a keyword network, and then executed a community network analysis on the collected data. The results of analysis are as the following. First, the patent keyword network indicated very low density and exceptionally high clustering coefficient. Technically, density is obtained by dividing the number of ties in a network by the number of all possible ties. The value ranges between 0 and 1, with higher values indicating denser networks and lower values indicating sparser networks. In real-world networks, the density varies depending on the size of a network; increasing the size of a network generally leads to a decrease in the density. The clustering coefficient is a network-level measure that illustrates the tendency of nodes to cluster in densely interconnected modules. This measure is to show the small-world property in which a network can be highly clustered even though it has a small average distance between nodes in spite of the large number of nodes. Therefore, high density in patent keyword network means that nodes in the patent keyword network are connected sporadically, and high clustering coefficient shows that nodes in the network are closely connected one another. Second, the cumulative degree distribution of the patent keyword network, as any other knowledge network like citation network or collaboration network, followed a clear power-law distribution. A well-known mechanism of this pattern is the preferential attachment mechanism, whereby a node with more links is likely to attain further new links in the evolution of the corresponding network. Unlike general normal distributions, the power-law distribution does not have a representative scale. This means that one cannot pick a representative or an average because there is always a considerable probability of finding much larger values. Networks with power-law distributions are therefore often referred to as scale-free networks. The presence of heavy-tailed scale-free distribution represents the fundamental signature of an emergent collective behavior of the actors who contribute to forming the network. In our context, the more frequently a patent keyword is used, the more often it is selected by researchers and is associated with other keywords or concepts to constitute and convey new patents or technologies. The evidence of power-law distribution implies that the preferential attachment mechanism suggests the origin of heavy-tailed distributions in a wide range of growing patent keyword network. Third, we found that among keywords that flew into a particular field, the vast majority of keywords with new links join existing keywords in the associated community in forming the concept of a new patent. This finding resulted in the same outcomes for both the short-term period (4-year) and long-term period (10-year) analyses. Furthermore, using the keyword combination information that was derived from the methodology suggested by our study enables one to forecast which concepts combine to form a new patent dimension and refer to those concepts when developing a new patent.

Corporate Credit Rating based on Bankruptcy Probability Using AdaBoost Algorithm-based Support Vector Machine (AdaBoost 알고리즘기반 SVM을 이용한 부실 확률분포 기반의 기업신용평가)

  • Shin, Taek-Soo;Hong, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.25-41
    • /
    • 2011
  • Recently, support vector machines (SVMs) are being recognized as competitive tools as compared with other data mining techniques for solving pattern recognition or classification decision problems. Furthermore, many researches, in particular, have proved them more powerful than traditional artificial neural networks (ANNs) (Amendolia et al., 2003; Huang et al., 2004, Huang et al., 2005; Tay and Cao, 2001; Min and Lee, 2005; Shin et al., 2005; Kim, 2003).The classification decision, such as a binary or multi-class decision problem, used by any classifier, i.e. data mining techniques is so cost-sensitive particularly in financial classification problems such as the credit ratings that if the credit ratings are misclassified, a terrible economic loss for investors or financial decision makers may happen. Therefore, it is necessary to convert the outputs of the classifier into wellcalibrated posterior probabilities-based multiclass credit ratings according to the bankruptcy probabilities. However, SVMs basically do not provide such probabilities. So it required to use any method to create the probabilities (Platt, 1999; Drish, 2001). This paper applied AdaBoost algorithm-based support vector machines (SVMs) into a bankruptcy prediction as a binary classification problem for the IT companies in Korea and then performed the multi-class credit ratings of the companies by making a normal distribution shape of posterior bankruptcy probabilities from the loss functions extracted from the SVMs. Our proposed approach also showed that their methods can minimize the misclassification problems by adjusting the credit grade interval ranges on condition that each credit grade for credit loan borrowers has its own credit risk, i.e. bankruptcy probability.

Sentiment analysis on movie review through building modified sentiment dictionary by movie genre (영역별 맞춤형 감성사전 구축을 통한 영화리뷰 감성분석)

  • Lee, Sang Hoon;Cui, Jing;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.97-113
    • /
    • 2016
  • Due to the growth of internet data and the rapid development of internet technology, "big data" analysis is actively conducted to analyze enormous data for various purposes. Especially in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of existing structured data analysis. Various studies on sentiment analysis, the part of text mining techniques, are actively studied to score opinions based on the distribution of polarity of words in documents. Usually, the sentiment analysis uses sentiment dictionary contains positivity and negativity of vocabularies. As a part of such studies, this study tries to construct sentiment dictionary which is customized to specific data domain. Using a common sentiment dictionary for sentiment analysis without considering data domain characteristic cannot reflect contextual expression only used in the specific data domain. So, we can expect using a modified sentiment dictionary customized to data domain can lead the improvement of sentiment analysis efficiency. Therefore, this study aims to suggest a way to construct customized dictionary to reflect characteristics of data domain. Especially, in this study, movie review data are divided by genre and construct genre-customized dictionaries. The performance of customized dictionary in sentiment analysis is compared with a common sentiment dictionary. In this study, IMDb data are chosen as the subject of analysis, and movie reviews are categorized by genre. Six genres in IMDb, 'action', 'animation', 'comedy', 'drama', 'horror', and 'sci-fi' are selected. Five highest ranking movies and five lowest ranking movies per genre are selected as training data set and two years' movie data from 2012 September 2012 to June 2014 are collected as test data set. Using SO-PMI (Semantic Orientation from Point-wise Mutual Information) technique, we build customized sentiment dictionary per genre and compare prediction accuracy on review rating. As a result of the analysis, the prediction using customized dictionaries improves prediction accuracy. The performance improvement is 2.82% in overall and is statistical significant. Especially, the customized dictionary on 'sci-fi' leads the highest accuracy improvement among six genres. Even though this study shows the usefulness of customized dictionaries in sentiment analysis, further studies are required to generalize the results. In this study, we only consider adjectives as additional terms in customized sentiment dictionary. Other part of text such as verb and adverb can be considered to improve sentiment analysis performance. Also, we need to apply customized sentiment dictionary to other domain such as product reviews.

Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network (주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석)

  • Shin, Hyunbo;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.179-200
    • /
    • 2019
  • Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information. Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction. To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes. However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM. By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words. This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.