• 제목/요약/키워드: mining subsidence

검색결과 76건 처리시간 0.025초

지반교란 영역 규명을 위한 고분해능 천부 탄성파 반사법 탐사 (High Resolution Shallow Seismic Reflection Survey for the Investigation of Ground Disturbance Area)

  • 고광범;이두성
    • 지구물리와물리탐사
    • /
    • 제6권1호
    • /
    • pp.28-34
    • /
    • 2003
  • 지반침하는 지난 3년간의 본 연구실의 중요한 연구 주제로 본 연구에서는 채굴적 붕괴로 육안상 지표침하는 뚜렷이 관측되지 않으나 그 하부 지반은 이미 교란되었다고 판단되는 영역을 천부 탄성파 반사법을 이용하여 고찰함으로써 향후 예상 침하영역을 정량적으로 도출하였다. 지반교란에 의한 탄성파 신호의 왜곡 및 감쇠를 최소화하고자 좁은 송수신 간격(0.3m) 및 가능한 짧은 오프셋(<30m)의 0.15m의 CMP간격을 가지는 측선배열로써 고주파수 천부 탄성파 자료를 획득하였다. 짧은 측선길이(43m)를 감안하여 고정된 지오폰에 대하여 송신원을 이동하는 배열법을 선택하였다. 침하에 의해 지반교란이 심한 조사지역의 탄성파 자료의 특성과 획득자료 대부분이 짧은거리 오프셋 탄성파 자료임을 고려하여 신중한 뮤팅과 잔여정보정 처리과정을 거쳐 탄성파 중합단면을 작성하였다. 지표 침하양상과 대비하여 중합단면을 해석, 정량적인 예상 침하영역을 분리하였다.

Application of black box model for height prediction of the fractured zone in coal mining

  • Zhang, Shichuan;Li, Yangyang;Xu, Cuicui
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.997-1010
    • /
    • 2017
  • The black box model is a relatively new option for nonlinear dynamic system identification. It can be used for prediction problems just based on analyzing the input and output data without considering the changes of the internal structure. In this paper, a black box model was presented to solve unconstrained overlying strata movement problems in coal mine production. Based on the black box theory, the overlying strata regional system was viewed as a "black box", and the black box model on overburden strata movement was established. Then, the rock mechanical properties and the mining thickness and mined-out section area were selected as the subject and object respectively, and the influences of coal mining on the overburden regional system were discussed. Finally, a corrected method for height prediction of the fractured zone was obtained. According to actual mine geological conditions, the measured geological data were introduced into the black box model of overlying strata movement for height calculation, and the fractured zone height was determined as 40.36 m, which was comparable to the actual height value (43.91 m) of the fractured zone detected by Double-block Leak Hunting in Drill. By comparing the calculation result and actual surface subsidence value, it can be concluded that the proposed model is adaptable for height prediction of the fractured zone.

Establishment of the roof model and optimization of the working face length in top coal caving mining

  • Chang-Xiang Wang;Qing-Heng Gu;Meng Zhang;Cheng-Yang Jia;Bao-Liang Zhang;Jian-Hang Wang
    • Geomechanics and Engineering
    • /
    • 제36권5호
    • /
    • pp.427-440
    • /
    • 2024
  • This study concentrates on the 301 comprehensive caving working face, notable for its considerable mining height. The roof model is established by integrating prior geological data and the latest borehole rock stratum's physical and mechanical parameters. This comprehensive approach enables the determination of lithology, thickness, and mechanical properties of the roof within 50 m of the primary mining coal seam. Utilizing the transfer rock beam theory and incorporating mining pressure monitoring data, the study delves into the geometric parameters of the direct roof, basic roof movement, and roof pressure during the initial mining process of the 301 comprehensive caving working face. The direct roof of the mining working face is stratified into upper and lower sections. The lower direct roof consists of 6.0 m thick coarse sandstone, while the upper direct roof comprises 9.2 m coarse sandstone, 2.6 m sandy mudstone, and 2.8 m medium sandstone. The basic roof stratum, totaling 22.1 m in thickness, includes layers such as silty sand, medium sandstone, sandy mudstone, and coal. The first pressure step of the basic roof is 61.6 m, with theoretical research indicating a maximum roof pressure of 1.62 MPa during periodic pressure. Extensive simulations and analyses of roof subsidence and advanced abutment pressure under varying working face lengths. Optimal roof control effect is observed when the mining face length falls within the range of 140 m-155 m. This study holds significance as it optimizes the working face length in thick coal seams, enhancing safety and efficiency in coal mining operations.

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.

○○광산의 지반 안정성 평가를 위한 수치해석적 연구 (A Numerical Study for Ground Stability Assessment in ○○Mine)

  • 손민;문현구
    • 터널과지하공간
    • /
    • 제26권6호
    • /
    • pp.484-492
    • /
    • 2016
  • 본 연구에서는 ${\bigcirc}{\bigcirc}$광산의 지반 안정성 평가를 위한 수치해석적 연구를 수행하였으며 해석에 고려된 침하의 인자들은 다음과 같다. 첫 번째로 손상대에 의한 암반의 물성 열화, 두 번째로 현장계측자료에 의한 국내 평균 측압계수 적용, 세 번째는 해당 광산의 실제 채광이력 조사, 네 번째는 채광 후 채굴적 주변 암반의 붕락을 가정하여 붕락된 암반을 추가로 굴착하는 해석기법이다. ${\bigcirc}{\bigcirc}$광산에서 실제 침하가 발생한 단면(5+10)을 대상으로 이 기법들을 적용하고 그 적용성을 확인하였으며, 침하가 발생하지 않았으나 침하가 우려되는 단면(3+10)을 대상으로 이 기법들을 또한 적용하고 지반 안정성을 평가하였다. 5+10 단면에서 추가 붕락을 통해 지표 최대변위가 41 mm 증가하여 46 mm가 나타났으며 추가 붕락에 따라 최대변위 위치가 실제 침하범위로 변화하는 양상을 확인하였다. 3+10 단면의 해석결과는 추가 붕락으로 5 mm 증가하여 7 mm의 지표 최대 변위가 발생하고 파괴영역이 채굴적 천단부에서 지표로 이어지지 않아 침하 가능성이 낮게 판단되었다.

지반침하 방지를 위한 고효율 수압식 충전 현장실험에 관한 연구 (Study on High-efficiency Hydraulic Filling Field Experiment for Subsidence Protection)

  • 양인재;최남수;전철수;이상은;신동춘
    • 터널과지하공간
    • /
    • 제24권5호
    • /
    • pp.373-385
    • /
    • 2014
  • 최근 국내에서는 폐광산 지반보강공사를 실시함에 있어 수압식 충전법을 적용하는 사례가 증가하고 있으나 효율적인 충전법 적용을 위한 다양한 연구가 미흡한 실정이다. 본 연구에서는 수압식 충전공법의 충전효율 개선을 위한 충전재료의 입도, 충전관의 형태 및 충전관 직경을 변경해 가면서 현장실험을 실시하였다. No.100체 통과백분율이 16.3% 인 모래를 이용하여 수직관 및 이경티관의 종류에 따른 충전량을 실험결과, 수직관을 이용하여 수로관에 충전한 경우 모래 충전량이 28.84 ton이였고, 100 mm 이경티관을 사용하여 충전한 경우 모래 충전량이 42.62 ton, 80 mm 이경티관을 사용하여 충전한 경우 모래 충전량이 53.33 ton, 50 mm 이경티관을 사용하여 충전한 경우 모래 충전량이 63.33 ton으로 각각 약 47.8%, 84.9%, 119.6% 증가하는 것을 확인할 수 있었다. 이는 단순 충전관의 형태만 변경해도 충전 효과를 극대화 할 수 있을 것으로 기대된다.

Support working resistance determined on top-coal caving face based on coal-rock combined body

  • Cheng, Zhanbo;Yang, Shengli;Li, Lianghui;Zhang, Lingfei
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.255-268
    • /
    • 2019
  • Taking top-coal caving mining face (TCCMF) as research object, this paper considers the combination of top-coal and immediate roof as cushion layer to build the solution model of support resistance based on the theory of elastic foundation beam. Meanwhile, the physical and mechanical properties of coal-rock combination influencing on strata behaviors is explored. The results illustrate that the subsidence of main roof in coal wall increases and the first weighting interval decreases with the increase of top-coal and immediate roof thicknesses as well as the decrease of top-coal and immediate roof elastic modulus. Moreover, the overlying strata reflecting on support has negative and positive relationship with top-coal thickness and immediate roof thickness, respectively. However, elastic modulus has limit influence on the dead weight of top-coal and immediate roof. As a result, it has similar roles on the increase of total support resistance and overlying strata reflecting on support in the limit range of roof control distance. In view of sensitive analysis causing the change of total support resistance, it can be regards as the rank of three components as immediate roof weight > overlying strata reflecting on support > top coal weight. Finally, combined with the monitoring data of support resistance in Qingdong 828, the validity of support resistance determined based on elastic foundation beam is demonstrated, and this method can be recommended to adopt for support type selecting in TCCMF.

Satellite Radar Interferometry for Mine Subsidence Monitoring

  • Ge Linlin
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2005년도 Proceedings of Aisa-Pacific International Seminar on Geomatics
    • /
    • pp.73-116
    • /
    • 2005
  • [ $\blacksquare$ ] The integration of radar interferometry(InSAR), GIS and GPS can be used as an operational technology to monitor ground deformation due to underground mining, earthquakes, and so on, at sub-centimetre of mm level accuracy; $\blacksquare$ Operational procedures and tools have been developed and tested at UNSW; and $\blacksquare$ We are very keen to promote the technology together with you all.

  • PDF

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Distribution and evolution of residual voids in longwall old goaf

  • Wang, Changxiang;Jiang, Ning;Shen, Baotang;Sun, Xizhen;Zhang, Buchu;Lu, Yao;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • 제19권2호
    • /
    • pp.105-114
    • /
    • 2019
  • In this paper, simulation tests were conducted with similar materials to study the distribution of residual voids in longwall goaf. Short-time step loading was used to simulate the obvious deformation period in the later stage of arch breeding. Long-time constant loading was used to simulate the rheological stage of the arch forming. The results show that the irregular caving zone is the key area of old goaf for the subsidence control. The evolution process of the stress arch and fracture arch in stope can be divided into two stages: arch breeding stage and arch forming stage. In the arch breeding stage, broken rocks are initially caved and accumulated in the goaf, followed by the step deformation. Arch forming stage is the rheological deformation period of broken rocks. In addition, under the certain loads, the broken rock mass undergoes single sliding deformation and composite crushing deformation. The void of broken rock mass decreases gradually in short-time step loading stage. Under the water lubrication, a secondary sliding deformation occurs, leading to the acceleration of the broken rock mass deformation. Based on above research, the concept of equivalent height of residual voids was proposed, and whose calculation equations were developed. Finally, the conceptual model was verified by the field measurement data.