• Title/Summary/Keyword: mining geomechanics

Search Result 300, Processing Time 0.023 seconds

Assessment of cerchar abrasivity test in anisotropic rocks

  • Erarslan, Nazife
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.527-534
    • /
    • 2019
  • There have been developed a number of methods to assess the abrasivity of rock materials with the increased use of mechanized rock excavation. These methods range from determination of abrasive and hard mineral content using petrographic thin section analysis to weight loss or development of wear flat on a specified cutting tool. The Cerchar abrasivity index (CAI) test has been widely accepted for the assessment of rock abrasiveness. This test has been considered to provide a reliable indication of rock abrasiveness for isotropic rocks. However, a great amount of rocks in nature are anisotropic. Hence, viability assessment of Cerchar abrasivity test for the anisotropic rocks is investigated in this research. The relationship between CAI value and quartz content for the isotropic rocks is well known in literature. However, a correlation between EQ, F-Schimazek value, Rock Abrasivity Index (RAI) and CAI of anisotropic rocks such as phyllite was done first time in literature with this research. The results obtained with this research show F-Schimazek values and RAI values should be considered when determination of the abrasivity of anisotropic rocks instead of just using Cerchar scratch test.

Mechanical model for analyzing the water-resisting key stratum to evaluate water inrush from goaf in roof

  • Ma, Kai;Yang, Tianhong;Zhao, Yong;Hou, Xiangang;Liu, Yilong;Hou, Junxu;Zheng, Wenxian;Ye, Qiang
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.299-311
    • /
    • 2022
  • Water-resisting key stratum (WKS) between coal seams is an important barrier that prevents water inrush from goaf in roof under multi-seam mining. The occurrence of water inrush can be evaluated effectively by analyzing the fracture of WKS in multi-seam mining. A "long beam" water inrush mechanical model was established using the multi-seam mining of No. 2+3 and No. 8 coal seams in Xiqu Mine as the research basis. The model comprehensively considers the pressure from goaf, the gravity of overburden rock, the gravity of accumulated water, and the constraint conditions. The stress distribution expression of the WKS was obtained under different mining distances in No. 8 coal seam. The criterion of breakage at any point of the WKS was obtained by introducing linear Mohr strength theory. By using the mechanical model, the fracture of the WKS in Xiqu Mine was examined and its breaking position was calculated. And the risk of water inrush was also evaluated. Moreover, breaking process of the WKS was reproduced with Flac3D numerical software, and was analyzed with on-site microseismic monitoring data. The results showed that when the coal face of No. 8 coal seam in Xiqu Mine advances to about 80 m ~ 100 m, the WKS is stretched and broken at the position of 60 m ~ 70 m away from the open-off cut, increasing the risk of water inrush from goaf in roof. This finding matched the result of microseismic analysis, confirming the reliability of the water inrush mechanical model. This study therefore provides a theoretical basis for the prevention of water inrush from goaf in roof in Xiqu Mine. It also provides a method for evaluating and monitoring water inrush from goaf in roof.

An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws

  • Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.8 no.4
    • /
    • pp.541-557
    • /
    • 2015
  • This research aims to analyze the fracture coalescence characteristics of brittle sandstone specimen ($80{\times}160{\times}30mm$ in size) containing various flaws (a single fissure, double squares and combined flaws). Using a rock mechanics servo-controlled testing system, the strength and deformation behaviours of sandstone specimen containing various flaws are experimentally investigated. The results show that the crack initiation stress, uniaxial compressive strength and peak axial strain of specimen containing a single fissure are all higher than those containing double squares, while which are higher than those containing combined flaws. For sandstone specimen containing combined flaws, the uniaxial compressive strength of sandstone increase as fissure angle (${\alpha}$) increases from $30^{\circ}$ to $90^{\circ}$, which indicates that the specimens with steeper fissure angles can support higher axial capacity for ${\alpha}$ greater than $30^{\circ}$. In the entire deformation process of flawed sandstone specimen, crack evolution process is discussed detailed using photographic monitoring technique. For the specimen containing a single fissure, tensile wing cracks are first initiated at the upper and under tips of fissure, and anti-tensile cracks and far-field cracks are also observed in the deformation process; moreover anti-tensile cracks usually accompanies with tensile wing cracks. For the specimen containing double squares, tensile cracks are usually initiated from the top and bottom edge of two squares along the direction of axial stress, and in the process of final unstable failure, more vertical splitting failures are observed in the ligament region. When a single fissure and double squares are formed together into combined flaws, the crack coalescence between the fissure tips and double squares plays a significant role for ultimate failure of the specimen containing combined flaws.

Thaw consolidation behavior of frozen soft clay with calcium chloride

  • Wang, Songhe;Wang, Qinze;Xu, Jian;Ding, Jiulong;Qi, Jilin;Yang, Yugui;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.189-203
    • /
    • 2019
  • Brine leakage is a common phenomenon during construction facilitated by artificial freezing technique, threatening the stability of frozen wall due to the continual thawing of already frozen domain. This paper takes the frequently encountered soft clay in Wujiang District as the study object, and remolded specimens were prepared by mixing calcium chloride solutions at five levels of concentration. Both the deformation and pore water pressure of frozen specimens during thawing were investigated by two-stage loading tests. Three sections were noted from the changes in the strain rate of specimens during thawing at the first-stage load, i.e., instantaneous, attenuated, and quasi-stable sections. During the second-stage loading, the deformation of post-thawed soils is closely correlated with the dissipation of pore water pressure. Two characteristic indexes were obtained including thaw-settlement coefficient and critical water content. The critical water content increases positively with salt content. The higher water content of soil leads to a larger thaw-settlement coefficient, especially at higher salt contents, based on which an empirical equation was proposed and verified. The normalized pore water pressure during thawing was found to dissipate slower at higher salt contents, with a longer duration to stabilize. Three physical indexes were experimentally determined such as freezing point, heat conductivity and water permeability. The freezing point decreases at higher salt contents, especially as more water is involved, like the changes in heat conductivity. The water permeability maintains within the same order at the considered range of salt contents, like the development of the coefficient of consolidation. The variation of the pore volume distribution also accounts for this.

Investigations of countermeasures used to mitigate tunnel deformations due to adjacent basement excavation in soft clays

  • Jinhuo Zheng;Minglong Shen;Shifang Tu;Zhibo Chen;Xiaodong Ni
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.563-573
    • /
    • 2024
  • In this study, various countermeasures used to mitigate tunnel deformations due to nearby multi-propped basement excavation in soft clay are explored by three-dimensional numerical analyses. Field measurements are used to calibrate the numerical model and model parameters. Since concrete slabs can constrain soil and retaining wall movements, tunnel movements reach the maximum value when soils are excavated to the formation level of basement. Deformation shapes of an existing tunnel due to adjacent basement excavation are greatly affected by relative position between tunnel and basement. When the tunnel is located above or far below the formation level of basement, it elongates downward-toward or upward-toward the basement, respectively. It is found that tunnel movements concentrate in a triangular zone with a width of 2 He (i.e., final excavation depth) and a depth of 1 D (i.e., tunnel diameter) above or 1 D below the formation level of basement. By increasing retaining wall thickness from 0.4 m to 0.9 m, tunnel movements decrease by up to 56.7%. Moreover, tunnel movements are reduced by up to 80.7% and 61.3%, respectively, when the entire depth and width of soil within basement are reinforced. Installation of isolation wall can greatly reduce tunnel movements due to adjacent basement excavation, especially for tunnel with a shallow burial depth. The effectiveness of isolation wall to reduce tunnel movement is negligible unless the wall reaches the level of tunnel invert.

Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus

  • Komurlu, Eren;Kesimal, Ayhan;Demir, Serhat
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.775-791
    • /
    • 2016
  • The indirect tensile strengths (ITSs) of different cemented paste backfill mixes with different curing times were determined by considering crack initiation and fracture toughness concepts under different loading conditions of steel loading arcs with various contact angles, flat platens and the standard Brazilian test jaw. Because contact area of the ITS test discs developes rapidly and varies in accordance with the deformability, ITSs of curing materials were not found convenient to determine under the loading apparatus with indefinite contact angle. ITS values increasing with an increase in contact angle can be measured to be excessively high because of the high contact angles resulted from the deformable characteristics of the soft paste backfill materials. As a result of the change of deformation characteristics with the change of curing time, discs have different contact conditions causing an important disadvantage to reflect the strength change due to the curing reactions. In addition to the experimental study, finite element analyses were performed on several types of disc models under various loading conditions. As a result, a comparison between all loading conditions was made to determine the best ITSs of the cemented paste backfill materials. Both experimental and numerical analyses concluded that loading arcs with definite contact angles gives better results than those obtained with the other loading apparatus without a definite contact angle. Loading arcs with the contact angle of $15^{\circ}$ was found the most convenient loading apparatus for the typical cemented paste backfill materials, although it should be used carefully considering the failure cracks for a valid test.

Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine

  • Chen, Lu;Zhou, Zilong;Zang, Chuanwei;Zeng, Ling;Zhao, Yuan
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.449-457
    • /
    • 2019
  • Physical model tests were first performed to investigate the failure pattern of multiple pillar-roof support system. It was observed in the physical model tests, pillars were design with the same mechanical parameters in model #1, cracking occurred simultaneously in panel pillars and the roof above barrier pillars. When pillars 2 to 5 lost bearing capacity, collapse of the roof supported by those pillars occurred. Physical model #2 was design with a relatively weaker pillar (pillar 3) among six pillars. It was found that the whole pillar-roof system was divided into two independent systems by a roof crack, and two pillars collapse and roof subsidence events occurred during the loading process, the first failure event was induced by the pillars failure, and the second was caused by the roof crack. Then, for a multiple pillar-roof support system, three types of failure patterns were analysed based on the condition of pillar and roof. It can be concluded that any failure of a bearing component would cause a subsidence event. However, the barrier pillar could bear the transferred load during the stress redistribution process, mitigating the propagation of collapse or cutting the roof to insulate the collapse area. Importantly, some effective methods were suggested to decrease the risk of catastrophic collapse, and the deep-hole-blasting was employed to improve the stability of the pillar and roof support system in a room and pillar mine.

Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling

  • Golpasand, Mohammad-Reza B.;Do, Ngoc Anh;Dias, Daniel;Nikudel, Mohammad-Reza
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.643-654
    • /
    • 2018
  • Tunnel excavation leads to a disturbance on the initial stress balance of surrounding soils, which causes convergences around the tunnel and settlements at the ground surface. Considering the effective impact of settlements on the structures at the surface, it is necessary to estimate them, especially in urban areas. In the present study, ground settlements due to the excavation of East-West Line 7 of the Tehran Metro (EWL7) and the Abuzar tunnels are evaluated and the effect of the lateral earth pressure coefficient ($K_0$) on their extension is investigated. The excavation of the tunnels was performed by TBMs (Tunnel Boring Machines). The coefficient of lateral earth pressure ($K_0$) is one of the most important geotechnical parameters for tunnel design and is greatly influenced by the geological characteristics of the surrounding soil mass along the tunnel route. The real (in-situ) settlements of the ground surface were measured experimentally using leveling methods along the studied tunnels and the results were compared with evaluated settlements obtained from both semi-empirical and numerical methods (using the finite difference software FLAC3D). The comparisons permitted to show that the adopted numerical models can effectively be used to predict settlements induced by a tunnel excavation. Then a numerical parametric study was conducted to show the influence of the $K_0$ values on the ground settlements. Numerical investigations also showed that the shapes of settlement trough of the studied tunnels, in a transverse section, are not similar because of their different diameters and depths of the tunnels.

Estimation of tensile strength and moduli of a tension-compression bi-modular rock

  • Wei, Jiong;Zhou, Jingren;Song, Jae-Joon;Chen, Yulong;Kulatilake, Pinnaduwa H.S.W.
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.349-358
    • /
    • 2021
  • The Brazilian test has been widely used to determine the indirect tensile strength of rock, concrete and other brittle materials. The basic assumption for the calculation formula of Brazilian tensile strength is that the elastic moduli of rock are the same both in tension and compression. However, the fact is that the elastic moduli in tension and compression of most rocks are different. Thus, the formula of Brazilian tensile strength under the assumption of isotropy is unreasonable. In the present study, we conducted Brazilian tests on flat disk-shaped rock specimens and attached strain gauges at the center of the disc to measure the strains of rock. A tension-compression bi-modular model is proposed to interpret the data of the Brazilian test. The relations between the principal strains, principal stresses and the ratio of the compressive modulus to tensile modulus at the disc center are established. Thus, the tensile and compressive moduli as well as the correct tensile strength can be estimated simultaneously by the new formulas. It is found that the tensile and compressive moduli obtained using these formulas were in well agreement with the values obtained from the direct tension and compression tests. The formulas deduced from the Brazilian test based on the assumption of isotropy overestimated the tensile strength and tensile modulus and underestimated the compressive modulus. This work provides a new methodology to estimate tensile strength and moduli of rock simultaneously considering tension-compression bi-modularity.

The study of strength behaviour of zeolite in cemented paste backfill

  • Eker, Hasan;Bascetin, Atac
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.421-434
    • /
    • 2022
  • In the present study, reference samples were prepared using ore preparation facility tailings taken from the copper mine (Kure, Kastamonu), Portland cement (PC) in certain proportions (3 wt%, 5 wt%, 7 wt%, 9wt% and 11 wt%), and water. Then natural zeolite taken from the Bigadic Region was mixed in certain proportions (10 wt%, 20 wt%, 30 wt% and 40 wt%) for each cement ratio, instead of the PC, to prepare zeolite-substituted CPB samples. Thus, the effect of using Zeolite instead of PC on CPB's strength was investigated. The obtained CPB samples were kept in the curing cabinet at a temperature of 25℃ and at least 80% humidity, and they were subjected to the Uniaxial Compressive Strength (UCS) test at the end of the curing periods of 3, 7, 14, 28, 56, and 90 days. Except for the 3 wt% cement ratio, zeolite substitution was observed to increase the compressive strength in all mixtures. Also, the liquefaction risk limit for paste backfill was achieved for all mixtures, and the desired strength limit value (0.7 MPa) was achieved for all mixtures with 28 days of curing time and 7 wt%, 9 wt%, 11 wt% cement ratios and 5% cement - 10% zeolite substituted mixture. Moreover, the limit value (4 MPa) required for use as roof support was obtained only for mixtures with 11% cement - 10% and 20% zeolite content. Generally, zeolite substitution seems to be more effective in early strength (up to 28th day). It has been determined that the long-term strength losses of zeolite-substituted paste backfill mixtures were caused by the reaction of sulfate and hydration products to form secondary gypsum, ettringite, and iron sulfate.