DOI QR코드

DOI QR Code

The study of strength behaviour of zeolite in cemented paste backfill

  • Eker, Hasan (Eskipazar Vocational School, Property Protection and Safety Division, Occupational Health and Safety, Karabuk University) ;
  • Bascetin, Atac (Department of Mining Engineering, Mining Faculty, Istanbul Technical University)
  • Received : 2021.02.13
  • Accepted : 2022.04.03
  • Published : 2022.05.25

Abstract

In the present study, reference samples were prepared using ore preparation facility tailings taken from the copper mine (Kure, Kastamonu), Portland cement (PC) in certain proportions (3 wt%, 5 wt%, 7 wt%, 9wt% and 11 wt%), and water. Then natural zeolite taken from the Bigadic Region was mixed in certain proportions (10 wt%, 20 wt%, 30 wt% and 40 wt%) for each cement ratio, instead of the PC, to prepare zeolite-substituted CPB samples. Thus, the effect of using Zeolite instead of PC on CPB's strength was investigated. The obtained CPB samples were kept in the curing cabinet at a temperature of 25℃ and at least 80% humidity, and they were subjected to the Uniaxial Compressive Strength (UCS) test at the end of the curing periods of 3, 7, 14, 28, 56, and 90 days. Except for the 3 wt% cement ratio, zeolite substitution was observed to increase the compressive strength in all mixtures. Also, the liquefaction risk limit for paste backfill was achieved for all mixtures, and the desired strength limit value (0.7 MPa) was achieved for all mixtures with 28 days of curing time and 7 wt%, 9 wt%, 11 wt% cement ratios and 5% cement - 10% zeolite substituted mixture. Moreover, the limit value (4 MPa) required for use as roof support was obtained only for mixtures with 11% cement - 10% and 20% zeolite content. Generally, zeolite substitution seems to be more effective in early strength (up to 28th day). It has been determined that the long-term strength losses of zeolite-substituted paste backfill mixtures were caused by the reaction of sulfate and hydration products to form secondary gypsum, ettringite, and iron sulfate.

Keywords

Acknowledgement

This study was funded by Istanbul University-Cerrahpasa with the project number FDK-2018-24707.

References

  1. Adiguzel, D. and Bascetin, A. (2019), "The investigation of effect of particle size distribution on flow behavior of paste tailings", J. Environ. Management, 243, 393-401. https://doi.org/10.1016/j.jenvman.2019.05.039.
  2. Ahmadi, B. and Shekarchi, M. (2010), "Use of natural zeolite as a supplementary cementitious material", Cement Concrete Compos., 32, 134-141. https://doi.org/10.1016/j.cemconcomp.2009.10.006.
  3. Ahmadi Chenarboni, H., Hamid Lajevardi, S., MolaAbasi, H. and Zeighami, E. (2021), "The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils", Constr. Build. Mater., 272, 121630. https://doi.org/10.1016/j.conbuildmat.2020.121630.
  4. Andic Cakir, O. and Copuroglu, O. (2008), "Effect of fineness and substitution level of supplementary cementing materials on alkali silica reaction expansions", Cement Concrete World, 12, 56-64. 10.1016/j.cemconres.2010.11.003. (in Turkish).
  5. Barnat-Hunek, D., Siddique, R., Klimek, B. and Franus, M. (2017), "The use of zeolite, lightweight aggregate and boiler slag in restoration renders", Constr. Build. Mater., 142, 162-174. https://doi.org/10.1016/j.conbuildmat.2017.03.079.
  6. Bascetin, A., Adiguzel, D., Eker, H., Odabas, E. and Tuylu, S. (2020), "Effects of puzzolanic materials in surface paste disposal by pilot-scale tests: observation of physical changes", Int. J .Environ. Sci. Technol., https://doi.org/10.1007/s13762-020-02892-w.
  7. Bascetin, A. and Tuylu, S. (2018), "Application of Pb-Zn tailings for surface paste disposal: geotechnical and geochemical observations", Int. J. Min. Reclam. Environ., 32, 312-326. https://doi.org/10.1080/17480930.2017.1282411.
  8. Been, K., Brown, E.T. and Hepworth, N. (2002), "Liquefaction potential of paste fill at Neves Corvo mine, Portugal", Min. Technol., 111, 47-58. https://doi.org/10.1179/mnt.2002.111.1.47.
  9. Belem, T., Benzaazoua, M. and Bussiere, B. (2000), "Mechanical behaviour of cemented paste backfill", Proceedings of the 53rd Canadian Geotechnical Conference, Montreal.
  10. Belem, T., Benzaazoua, M., (2008), "Design and application of underground mine paste backfill technology", Geotech. Geol. Eng., 26, 147-174 https://doi.org/10.1007/s10706-007-9154-3
  11. Benzaazoua, M., Belem, T. and Bussiere, B. (2002), "Chemical factors that influence the performance of mine sulphidic paste backfill", Cement Concrete Res., 32, 1133-1144. https://doi.org/10.1016/S0008-8846(02)00752-4.
  12. Benzaazoua, M., Ouellet, J., Servant, S., Newman, P. and Verburg, R. (1999), "Cementitious backfill with high sulphur content: physical, chemical and mineralogical characterization", Cement Concrete Res., 29(5), 719 - 725. https://doi.org/10.1016/S0008-8846(99)00023-X
  13. Benzaazoua, M., Fall, M. and Belem, T. (2004), "A contribution to understanding the hardening process of cemented pastefill", Miner. Eng., 17, 141-152. https://doi.org/10.1016/j.mineng.2003.10.022.
  14. Benzaazoua, M., Ouellet, J., Servant, S., Newman, P. and Verburg, R. (1999), "Cementitious backfill with high sulfur content Physical, chemical, and mineralogical characterization", Cement Concrete Res., 29, 719-725. https://doi.org/10.1016/S0008-8846(99)00023-X.
  15. Brackebusch, F.W. and Brackebusch, F.W. (1995), "Basics of paste backfill systems", Int. J. Rock Mech. Min. Sci. Geomech., Abstracts (1995), 10.1016/0148-9062(95)90153-v.
  16. C39M-18, A.C. (2018), "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens", ASTM, West Conshohocken, PA.
  17. Chen, J.J., Li, L.G., Ng, P.L. and Kwan, A.K.H. (2017), "Effects of superfine zeolite on strength, flowability and cohesiveness of cementitious paste", Cement Concrete Compos., 83, 101-110. https://doi.org/10.1016/j.cemconcomp.2017.06.010.
  18. Cihangir, F. (2011), "Investigation of utilisation of alkali activated blast furnace slag as binder in paste backfill", PhD Thesis, Karadeniz Technical University, Trabzon, Turkey (In Turkish).
  19. Cihangir, F. and Akyol, Y. (2018), "Mechanical, hydrological and microstructural assessment of the durability of cemented paste backfill containing alkali-activated slag", Int. J. Min. Reclam. Environ., 32, 123-143. https://doi.org/10.1080/17480930.2016.1242183.
  20. Cihangir, F., Ercikdi, B., Kesimal, A., Deveci, H. and Erdemir, F. (2015), "Paste backfill of high-sulphide mill tailings using alkali-activated blast furnace slag: Effect of activator nature, concentration and slag properties", Miner. Eng., 83, 117-127. https://doi.org/10.1016/j.mineng.2015.08.022.
  21. Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A. and Deveci, H. (2012), "Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: Effect of binder type and dosage", Miner. Eng., 30, 33-43. https://doi.org/10.1016/j.mineng.2012.01.009.
  22. Cihangir, F., Ercikdi, B., Turan, A., Kesimal, A., Deveci, H. and Karaoglu, K. (2011), "Utilisation of sodium silicate activated blast furnace slag as an alternative binder in paste backfill of high-sulphide mill tailings", Australian Centre for Geomechanics.
  23. De Souza, E., Archibald, J.F. and Dirige, A. (2003), "Economics and perspectives of underground backfill practices in Canadian mining", 105th annual general meeting of the Canadian institute of mining, Metallurgy and Petroleum, Montreal, Canada.
  24. Digis, A. (2015), "The effects of ground natural zeolite as a mineral additive on mortar properties", Istanbul University, Graduate Education Institute, Istanbul (in Turkish)
  25. Eker, H. (2019), "Determination of optimum design parameters in deposition of metalic process tailings by paste backfill method", Istanbul University-Cerrahpasa, Graduate Education Institute, p 252, Istanbul (in Turkish).
  26. Eker, H., Bascetin, A., Tuylu, S. and Adiguzel, D. (2020), "The effect of blast furnace slag substitution on the strength properties of cemented paste backfill", Dicle University, Faculty of Engineering, J. Eng., 11(2), 701-714. https://doi.org/10.24012/dumf.627148 (in Turkish).
  27. Eker, H. and Bascetin, A. (2022), "Influence of silica fume on mechanical property of cemented paste backfill", Constr. Build. Mater., 317, 126089. https://doi.org/10.1016/j.conbuildmat.2021.126089.
  28. Ercikdi, B. (2009), "Effect of pozzolanic mineral and chemical admixtures on paste backfill performance", PhD Thesis, Karadeniz Technical University, Trabzon, Turkey (in Turkish)
  29. Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H., ve Alp, I., (2009a), "Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings", J. Hazard. Mater., 168, 848-856. https://doi.org/10.1016/j.jhazmat.2009.02.100
  30. Ercikdi, B., Kesimal, A., Cihangir, F., Deveci, H. and ve Alp, I. (2009b), "Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage", Cement Concrete Compos., 31(4), 268-274. https://doi.org/10.1016/j.cemconcomp.2009.01.008.
  31. Ercikdi, B., Baki, H. and Izki, M. (2013), "Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill", J. Environ. Management, 115, 5-13. https://doi.org/10.1016/j.jenvman.2012.11.014.
  32. Ercikdi, B., Cihangir, F., Kesimal, A. and Deveci, H. (2017), Practical Importance of Tailings for Cemented Paste Backfill, Springer International Publishing, Cham.
  33. Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. and Alp, I. (2010), "Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings", Waste Management Res., 28, 430-435. https://doi.org/10.1177/0734242X09351905.
  34. Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. and Alp, I. (2009), "Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings", J. Hazard. Mater., 168, 848-856. https://doi.org/10.1016/j.jhazmat.2009.02.100.
  35. Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H. and Alp, I. (2010), "Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings", J. Hazard. Mater., 179, 940-946. https://doi.org/10.1016/j.jhazmat.2010.03.096.
  36. Ercikdi, B., Kulekci, G. and Yilmaz, T. (2015), "Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings", Constr. Build. Mater., 93, 573-583. https://doi.org/10.1016/j.conbuildmat.2015.06.042.
  37. Fall, M., Adrien, D., Celestin, J.C., Pokharel, M. and Toure, M. (2009), "Saturated hydraulic conductivity of cemented paste backfill", Miner. Eng., 22, 1307-1317. https://doi.org/10.1016/j.mineng.2009.08.002.
  38. Fall, M. and Benzaazoua, M. (2003), "Advances in predicting performance properties and cost of paste backfill", Tali. Mine Waste, 73-85.
  39. Fall, M. and Benzaazoua, M. (2005), "Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization", Cement Concrete Res., 35, 301-314. https://doi.org/10.1016/j.cemconres.2004.05.020.
  40. Fall, M., Benzaazoua, M. and Saa, E.G. (2008), "Mix proportioning of underground cemented tailings backfill", Tunn. Undergr. Sp. Technol., 28(1), 80-90.
  41. Fall, M. and ve Samb, S. (2008), "Pore structure of cemented tailings materials under natural or accidental thermal loads", Mater. Characterization, 59, 598-605. https://doi.org/10.1016/j.matchar.2007.05.003
  42. Fall, M. and Samb, S.S. (2009), "Effect of high temperature on strength and microstructural properties of cemented paste backfill", Fire Saf. J., 44(4), 642-651 https://doi.org/10.1016/j.firesaf.2008.12.004
  43. Fall, M., Celestin, J.C., Pokharel, M. and Toure, M. (2010), "A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill", Eng. Geol., 114, 397-413. https://doi.org/10.1016/j.enggeo.2010.05.016.
  44. Feng, N., Jia, H., and Hao, T. (1998), "Effect and mechanism of natural zeolite on suppressing ASR in concrete", Special Publication, ACI Symposium Publication, 178(1998), 797-820.
  45. Gayana, B.C. and Ram Chandar, K. (2018), "Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements-A review", Adv. Concrete Constr., 6(3), 221-243. https://doi.org/10.12989/acc.2018.6.3.221.
  46. Ghirian, A. and Fall, M. (2014), "Coupled thermo-hydromechanical-chemical behaviour of cemented paste backfill in column experiments", Eng. Geol., 170, 11-23. https://doi.org/10.1016/j.enggeo.2013.01.015.
  47. Ghirian, A. and Fall M, (2016), "Strength evolution and deformation behaviour of cemented paste backfill at early ages": effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol., 26(5), 809-817. https://doi.org/10.1016/j.ijmst.2016.05.039
  48. Ghourchian, S., Wyrzykowski, M., Lura, P., Shekarchi, M. and Ahmadi, B. (2013), "An investigation on the use of zeolite aggregates for internal curing of concrete", Constr. Build. Mater., 40, 135-144. https://doi.org/10.1016/j.conbuildmat.2012.10.009.
  49. Grice, T. (1998), "Underground mining with backfill", Proceedings of the 2nd Annual Summit oe Mine Tailings Disposal Systems, Brisbane, Nov, 24-25.
  50. Hassani, F. and Archibald, J. (1998), "Mine backfill. In: Canadian Institute of mine, Metallurgy and Petroleum", Published on CD-ROM Proceedings, Canada, 263p.
  51. Hassani, F.P., Ouellet, J. and Hossein, M. (2001), "Strength development in underground high-sulphate paste backfill operation", CIM bulletin, 57-62.
  52. Jafarpour, P., Ziaie Moayed, R. and Kordnaeij, A. (2020), "Yield stress for zeolite-cement grouted sand", Constr. Build. Mater., 247, 118639. https://doi.org/10.1016/j.conbuildmat.2020.118639.
  53. Janotka, I., Ray, A.S. and Samarin, A. (2003), "Zeolite blended cement for better sulphate resistance", Concrete Institute of Australia.
  54. Karakurt, C., Kurama, H. and Topcu, I.B. (2010), "Utilization of natural zeolite in aerated concrete production", Cement Concrete Compos., 32, 1-8. https://doi.org/10.1016/j.cemconcomp.2009.10.002.
  55. Karakurt, C. and Topcu, I.B. (2011), "Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete", Constr. Build. Mater., 25, 1789-1795. https://doi.org/10.1016/j.conbuildmat.2010.11.087.
  56. Kesimal, A., Yilmaz, E., Ercikdi, B., Alp, I. and Deveci, H. (2005), "Effect of properties of tailings and binder on the short-and long-term strength and stability of cemented paste backfill", Mater. Lett., 59, 3703-3709. https://doi.org/10.1016/j.matlet.2005.06.042.
  57. Klein, K. and Simon, D. (2006), "Effect of specimen composition on the strength development in cemented paste backfill", Can. Geotech. J., 43, 310-324. 10.1139/t06-005.
  58. Kocak, Y., Tasci, E. and Kaya, U. (2013), "The effect of using natural zeolite on the properties and hydration characteristics of blended cements", Constr. Build. Mater., 47, 720-727. https://doi.org/10.1016/j.conbuildmat.2013.05.033.
  59. Landriault, D. (1995), "Paste backfill mix design for Canadian underground hard rock mining", Proceedings of the 97th Annual General Meeting of CIM, Rock Mechanics and Strata Control Session. Halifax, Nova Scotia.
  60. Le Roux, K., Bawden, W.F. and Grabinsky, M.W. (2004), "Liquefaction analysis of early age cemented paste backfill" Proceedings of the 8th International Symposium on Mining with Backfill, Beijing, China.
  61. Li, W. and Fall, M. (2016), "Sulphate effect on the early age strength and self-desiccation of cemented paste backfill", Constr. Build. Mater., 106, 296-304. https://doi.org/10.1016/j.conbuildmat.2015.12.124
  62. Markiv, T., Sobol, K., Franus, M. and Franus, W. (2016), "Mechanical and durability properties of concretes incorporating natural zeolite", Arch. Civil Mech. Eng., 16, 554-562. https://doi.org/10.1016/j.acme.2016.03.013.
  63. MolaAbasi, H., Saberian, M. and Li, J. (2019), "Prediction of compressive and tensile strengths of zeolite-cemented sand using porosity and composition", Constr. Build. Mater., 202, 784-795. https://doi.org/10.1016/j.conbuildmat.2019.01.065.
  64. MolaAbasi, H., Naderi Semsani, S., Saberian, M., Khajeh, A., Li, J. and Harandi, M. (2020), "Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: A micro- and macro-level approach", J. Cleaner Production, 267,1-18, 122209. https://doi.org/10.1016/j.jclepro.2020.122209.
  65. Nagrockiene, D. and Girskas, G. (2016), "Research into the properties of concrete modified with natural zeolite addition", Constr. Build. Mater., 113, 964-969. https://doi.org/10.1016/j.conbuildmat.2016.03.133.
  66. Najimi, M., Sobhani, J., Ahmadi, B. and Shekarchi, M. (2012), "An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan", Constr. Build. Mater., 35, 1023-1033. https://doi.org/10.1016/j.conbuildmat.2012.04.038.
  67. Naylor, J., Farmery, R.A. and Tenbergen, R.A. (1997), "Paste backfill at the Macassa mine with flash paste production in a paste production and storage mechanism", Proceedings of the 29th annual meeting of the Canadian mineral processors, Ottawa, Ontario, January.
  68. Orejarena, L. and Fall, M, (2010), "The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill", Bullet. Eng. Geol. Environ., 69, 659-670. https://doi.org/10.1007/s10064-010-0326-7
  69. Perraki, T., Kakali, G. and Kontoleon, F. (2003), "The effect of natural zeolites on the early hydration of portland cement", Microporous Mesoporous Mater., 61, 205-212. https://doi.org/10.1016/S1387-1811(03)00369-X.
  70. Pokharel, M. (2008), "Geotechnical and environmental responses of paste tailings systems to coupled thermo-chemical loadings", University of Ottawa (Canada)
  71. Pokharel, M. and Fall, M. (2011), "Coupled thermo-chemical effects on the strenght development on slag-paste backfill materials", ASCE J. Master. Civ. Eng., 23(5), 511-525. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000192
  72. Pokharel, M. and Fall, M. (2013), "Combined influence of sulphate and temperature on the saturated hydraulic conductivity of hardened cemented paste backfill", Cement Concrete Compos., 38, 21-28. https://doi.org/10.1016/j.cemconcomp.2013.03.015.
  73. Poon, C.S., Lam, L., Kou, S.C. and Lin, Z.S. (1999), "A study on the hydration rate of natural zeolite blended cement pastes", Constr. Build. Mater., 13, 427-432. https://doi.org/10.1016/S0950-0618(99)00048-3.
  74. Ramezanianpour, A.A., Mousavi, R., Kalhori, M., Sobhani, J. and Najimi, M. (2015), "Micro and macro level properties of natural zeolite contained concretes", Constr. Build. Mater., 101, 347-358. https://doi.org/10.1016/j.conbuildmat.2015.10.101.
  75. Ramyar, K. and Cakir, A.O. (2003), "Effect of fineness and replacement level of natural zeolite powder on alkali-silica reaction", Cement and concrete world, 8.
  76. Ranjbar, M.M., Madandoust, R., Mousavi, S.Y. and Yosefi, S. (2013), "Effects of natural zeolite on the fresh and hardened properties of self-compacted concrete", Constr. Build. Mater., 47, 806-813. https://doi.org/10.1016/j.conbuildmat.2013.05.097.
  77. Sabet, F.A., Libre, N.A. and Shekarchi, M. (2013), "Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash", Constr. Build. Mater., 44, 175-184. https://doi.org/10.1016/j.conbuildmat.2013.02.069.
  78. Samimi, K., Kamali-Bernard, S., Akbar Maghsoudi, A., Maghsoudi, M. and Siad, H. (2017), "Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes", Constr. Build. Mater., 151, 292-311. 10.1016/j.conbuildmat.2017.06.071.
  79. Sanytsky, M. and Markiv, T. (2010), "Modified composite cements", Edition of Lviv Polytechnic National University, 59, 130.
  80. Sezer, I.G., Kambiz, R., Karasu, B., Burak Goktepe, A. and Sezer, A. (2008), "Image analysis of sulfate attack on hardened cement paste", Mater. Design, 29, 224-231. https://doi.org/10.1016/j.matdes.2006.12.006.
  81. Shon, C.S. and Kim, Y.S. (2013), "Evaluation of West Texas natural zeolite as an alternative of ASTM Class F fly ash", Mater., 47, 389-396. https://doi.org/10.1016/j.conbuildmat.2013.04.041.
  82. Taban, H., Gokce, H.S. and Abama, H.I. (2012), "Ecological effects of natural pozzolans used additive material in cement", J. Polytechnic-Politeknik Dergisi, 15, 185-190. https://doi.org/10.2339/2012.15.4, 185-190.
  83. Tariq, A. and Nehdi, M. (2007), "Developing durable paste backfill from sulphidic tailings", Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 160, 155-166.
  84. Toker, M. (2013), "Optimization of the use of mineral additives in cement production for reduce to energy comsumption and emissions", Istanbul Technical University, Institute of Science and Technology, Istanbul.
  85. Turanli, L., Yucel, H.,Guncuoglu, C.M., Culfaz, A. and Uzal, B. (2007), "The use of natural zeolites in the construction industry", Project No. 104M393, Ankara..
  86. Tuylu, S., Bascetin, A. and Adiguzel, D. (2019), "The effects of cement on some physical and chemical behavior for surface paste disposal method", J. Environ. Management, 231, 33-40. https://doi.org/10.1016/j.jenvman.2018.10.007.
  87. Tuylu, S. (2021), "Effect of different particle size distribution of zeolite on the strength of cemented paste backfill", Int. J. Environ. Sci. Technol., https://doi.org/10.1007/s13762-021-03659-7.
  88. Uzal, B. and Turanli, L. (2012), "Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure", Cement Concrete Compos., 34, 101-109. https://doi.org/10.1016/j.cemconcomp.2011.08.009.
  89. Valipour, M., Pargar, F., Shekarchi, M. and Khani, S. (2013), "Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study", Constr. Build. Mater., 41, 879-888. https://doi.org/10.1016/j.conbuildmat.2012.11.054.
  90. Vejmelkova, E., Konakova, D., Kulovana, T., Keppert, M., Zumar, J., Rovnanikova, P., Kersner, Z., Sedlmajer, M. and Cerny, R. (2015), "Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance", Cement Concrete Compos., 55, 259-267. https://doi.org/10.1016/j.cemconcomp.2014.09.013.
  91. Vysvaril, M. and Bayer, P. (2016), "Immobilization of heavy metals in natural zeolite-blended Cement Pastes", Procedia Eng., 151, 162-169. https://doi.org/10.1016/j.proeng.2016.07.363.
  92. Wang, G., Tian, S., Hu, B., Kong, X. and Chen, J. (2020). "An experimental study on tailings deposition characteristics and variation of tailings dam saturation line", Geomech. Eng., 23(1), 85-92. http://doi.org/10.12989/gae.2020.23.1.085.
  93. Wei, Z., Chen, Y., Yin, G., Yang, Y. and Shu, W. (2019), "An alternative upstream method for the Zhelamuqing tailings impoundment construction of a Copper Mine in China", Geomech. Eng., 19(5), 383-392. http://doi.org/10.12989/gae.2019.19.5.383.
  94. Yilmaz, B., Ucar, A., Oteyaka, B. and Uz, V. (2007), "Properties of zeoliteic tuff (Clinoptilolitee) blended portland cement", Build. Environ., 42, 3808-3815. https://doi.org/10.1016/j.buildenv.2006.11.006
  95. Yilmaz, E., Belem, T., Bussiere, B., Mbonimpa, M. and Benzaazoua, M. (2015), "Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents", Constr. Build. Mater., 75, 99-111. https://doi.org/10.1016/j.conbuildmat.2014.11.008.
  96. Yilmaz, E. and Guresci, M. (2017), "Design and characterization of underground paste backfill" Springer International Publishing, Cham.
  97. Yilmaz, T., Ercikdi, B. and Deveci, H. (2018), "Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings", J. Environ. Management, 222, 250-259. https://doi.org/10.1016/j.jenvman.2018.05.075.
  98. Yilmaz, T., Ercikdi, B. and Cihangir, F. (2017), "Effect of the partial replacement of blast furnace slag and perlite on the mechanical and microstructural properties of cemented paste backfill", Cukurova University Journal of the Faculty of Engineering and Architecture, 32(2), 239-251. (in Turkish). https://doi.org/10.21605/cukurovaummfd.358429.