• Title/Summary/Keyword: minimum-mean-square error (MMSE)

Search Result 135, Processing Time 0.027 seconds

BER Performance of OFDM Combined with TDM Using Frequency-Domain Equalization

  • Gacanin, Haris;Takaoka, Shinsuke;Adachi, Fumiyuki
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (TDM), in this paper called OFDM/TDM, can overcome the high peak-to-average-power ratio (PAPR) problem of the conventional OFDM and improve the robustness against long time delays. In this paper, the bit error rate (BER) performance of OFDM/FDM in a frequency-selective Rayleigh fading. channel is evaluated by computer simulation. It is shown that the use of frequency-domain equalization based on minimum mean square error criterion (MMSE-FDE) can significantly improve the BER performance, compared to the conventional OFDM, by exploiting the channel frequency-selectivity while reducing the PAPR or improving the robustness against long time delays. It is also shown that the performance of OFDM/FDM designed to reduce the PAPR can bridge the conventional OFDM and single-carrier (SC) transmission by changing the design parameter.

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

Performance Improvement of Channel Estimation based on Time-domain Threshold for OFDM Systems (시간영역 문턱값을 이용한 OFDM 시스템의 채널 추정 성능 향상)

  • Lee, You-Seok;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.720-724
    • /
    • 2008
  • Channel estimation in OFDM systems is usually carried out in frequency domain based on the least-squares (LS) method and the minimum mean-square error (MMSE) method with known pilot symbols. The LS estimator has a merit of low complexity but may suffer from the noise because it does not consider any noise effect in obtaining its solution. To enhance the noise immunity of the LS estimator, we consider estimation noise in time domain. Residual noise existing at the estimated channel coefficients in time domain could be reduced by reasonable selection of a threshold value. To achieve this, we propose a channel-estimation method based on a time-domain threshold which is a standard deviation of noise obtained by wavelet decomposition. Computer simulation shows that the estimation performance of the proposed method approaches to that of the known-channel case in terms of bit-error rates after the Viterbi decoder in overall SNRs.

DFT-based Channel Estimation Scheme for Sidelink in D2D Communication (D2D 통신에서 사이드링크를 위한 DFT 기반 채널 추정 기법)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.22-31
    • /
    • 2015
  • Recently, 3rd Generation Partnership Project (3GPP) has developed device-to-device (D2D) communication to cope with the explosively increasing mobile data traffic. The D2D communication uses sidelink based on single carrier-frequency division multiple access (SC-FMDA) due to its low peak-to-average power ratio (PAPR). In addition, demodulation reference signal (DMRS) is designed to support multiple input multiple output (MIMO). In this paper, we propose the DFT-based channel estimation scheme for sidelink in D2D communication. The proposed scheme uses the 2-Dimensional Minimum Mean Square Error (2-D MMSE) interpolation scheme for the user moving at a high speed. We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced system. Simulation results show that the proposed channel estimation scheme can improve signal-to-interference-plus-noise ratio (SINR), throughput and spectral efficiency of conventional scheme.

Joint Precoding Technique for Interference Cancellation in Multiuser MIMO Relay Networks for LTE-Advanced System (LTE-Advanced 시스템의 다중 사용자 MIMO Relay 네트워크에서 간섭 제거를 위한 Joint Precoding 기술)

  • Malik, Saransh;Moon, Sang-Mi;Kim, Bo-Ra;Kim, Cheol-Sung;Hwang, In-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.15-26
    • /
    • 2012
  • In this paper, we perform interference cancellation in multiuser MIMO (Multiple Input Multiple Output) relay network with improved Amplify-and-Forward (AF) and Decode-and-Forward (DF) relay protocols. The work of interference cancellation is followed by evolved NodeB (eNB), Relay Node (RN) and User Equipment (UE) to improve the error performance of whole transmission system with the explicit use of relay node. In order to perform interference cancellation, we use Dirty Paper Coding (DPC) and Thomilson Harashima Precoding (THP) allied with detection techniques Zero Forcing (ZF), Minimum Mean Square Error (MMSE), Successive Interference Cancellation (SIC) and Ordered Successive Interference Cancellation (OSIC). These basic techniques are studied and improved in the proposal by using the functions of relay node. The performance is improved by Decode-and-Forward which enhance the cancellation of interference in two layers at the cooperative relay node. The interference cancellation using weighted vectors is performed between eNB and RN. In the final results of the research, we conclude that in contrast with the conventional algorithms, the proposed algorithm shows better performance in lower SNR regime. The simulation results show the considerable improvement in the bit error performance by the proposed scheme in the LTE-Advanced system.

Analysis of BER According to Spatial and Frequency Diversity Gain in Uplink SC-FDMA with SIMO Systems (상향링크 SIMO 시스템에서 공간 및 주파수 다이버시티 이득에 따른 SC-FDMA의 BER 성능 분석)

  • Lee, Jin-Hui;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.535-547
    • /
    • 2014
  • We investigate BER (Bit Error Ratio) performance according to the gain of spatial and frequency diversities in uplink SC-FDMA of SIMO (Single Input Multiple Output) systems. The main results of the analysis in this paper are as follows. First, we prove that performance of integrated system for considering spatial and frequency diversity combining in parallel is equivalent with the performance of sequential system for performing diversity combining in sequence. By signal modeling, it is demonstrated that the performances of both systems are the same when the frequency diversity combining technique of the sequential system is equal to diversity combining technique of the integrated system, and spatial diversity combining technique of the sequential system is performed as MRC in advance of frequency diversity combining. Secondly, it is found that effect on the BER performance is different according to the gain of spatial and frequency diversities, respectively. The frequency diversity gain increases by increasing the number of subcarrier. It might affect the performance improvement of high SNR(Signal to Noise Ratio) while it maintains gap between performances of ZF(Zero Forcing) and MMSE(Minimum Mean Square Error) in frequency diversity combining schemes. Also, spatial diversity gain increases as the number of receiving antennas increases. It means that it can reduce performance gap between ZF and MMSE in frequency diversity combining schemes by increasing the number of receiving antennas. In addition, it might affect the performance improvement of the whole SNR. Finally, through the analysis of performance according to the spatial diversity gain, the performance of ZF in frequency diversity combining is equal to the MMSE if the number of receiving antennas is 6 or more.

A comparative analysis on Blind Adaptation Algorithms performances for User Detection in CDMA Systems (CDMA System에서 사용자 검파를 위한 Blind 적용 알고리즘에 관한 성능 비교 분석)

  • 조미령;윤석하
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.537-546
    • /
    • 2001
  • Griffth's and LCCMA which are Single-user detection adaptive algorithm are proposed for mitigate MAI(multiple access interference) and the near-far problem in direct-sequence spread-spectrum CDMA system and MOE Algorithm is proposed for MMSE(Minimum Mean-Square Error). This paper pertains to three types of Blind adaptive algorithms which can upgrade system functionality without the requirements from training sequence. It goes further to compare and analyze the functionalities of the algorithms as per number of interfering users or data update rate of the users. The simulation results was that LCCMA algorithm was superior to other algorithms in both areas. Blind application enabled a more flexible network design by eliminating the necessity of training sequence.

  • PDF

Efficiency Improvement of the Fixed-Complexity Sphere Decoder

  • Mohaisen, Manar;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.494-507
    • /
    • 2011
  • In this paper, we propose two schemes to reduce the complexity of fixed-complexity sphere decoder (FSD) algorithm in the ordering and tree-search stages, respectively, while achieving quasi-ML performance. In the ordering stage, we propose a QR-decomposition-based FSD signal ordering based on the zero-forcing criterion (FSD-ZF-SQRD) that requires only a few number of additional complex flops compared to the unsorted QRD. Also, the proposed ordering algorithm is extended using the minimum mean square error (MMSE) criterion to achieve better performance. In the tree-search stage, we introduce a threshold-based complexity reduction approach for the FSD depending on the reliability of the signal with the largest noise amplification. Numerical results show that in 8 ${\times}$ 8 MIMO system, the proposed FSD-ZF-SQRD and FSD-MMSE-SQRD only require 19.5% and 26.3% of the computational efforts required by Hassibi's scheme, respectively. Moreover, a third threshold vector is outlined which can be used for high order modulation schemes. In 4 ${\times}$ 4 MIMO system using 16-QAM and 64-QAM, simulation results show that when the proposed threshold-based approach is employed, FSD requires only 62.86% and 53.67% of its full complexity, respectively.

Efficiency Improvement of the Fixed-complexity Sphere Decoder

  • Mohaisen, Manar;Chang, Kyung-Hi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.2
    • /
    • pp.330-343
    • /
    • 2011
  • In this paper, we propose two schemes to reduce the complexity of fixed-complexity sphere decoder (FSD) algorithm in the ordering and tree-search stages, respectively, while achieving quasi-ML performance. In the ordering stage, we propose a QR-decomposition-based FSD signal ordering based on the zero-forcing criterion (FSD-ZF-SQRD) that requires only a few number of additional complex flops compared to the unsorted QRD. Also, the proposed ordering algorithm is extended using the minimum mean square error (MMSE) criterion to achieve better performance. In the tree-search stage, we introduce a threshold-based complexity reduction approach for the FSD depending on the reliability of the signal with the largest noise amplification. Numerical results show that in $8{\times}8$ MIMO system, the proposed FSD-ZF-SQRD and FSD-MMSE-SQRD only require 19.5% and 26.3% of the computational efforts required by Hassibi’s scheme, respectively. Moreover, a third threshold vector is outlined which can be used for high order modulation schemes. In $4{\times}4$ MIMO system using 16-QAM and 64-QAM, simulation results show that when the proposed threshold-based approach is employed, FSD requires only 62.86% and 53.67% of its full complexity, respectively.

Modified Partial Sample Average Algorithm for Noise Variance Estimation (잡음 분산 추정을 위한 개선된 Partial Sample Average 알고리즘)

  • Park, Jung-Jun;Lee, Jinyong;Lim, Taemin;Kim, Younglok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.167-170
    • /
    • 2010
  • 잡음 분산 값은 SNR(signal-to-noise ratio) 추정이나 MMSE(minimum mean square error) 계산, 채널 임펄스 응답의 추정 등에 사용되는 중요한 파라미터이다. 채널이 시간에 따라 변하는 무선 통신 환경에서, 신호와 섞여 있는 잡음과 간섭 신호의 정확한 추정에는 그 한계가 있으며 이로 인해 발생하는 추정 오차는 수신기의 데이터 검출 성능을 저하시킨다. 훈련열을 이용하여 채널을 추정하였을 경우 추정된 채널 임펄스 응답 신호 중 다중 경로 신호는 소수에 불과하고 나머지 대부분의 계수는 잡음 성분만을 포함하는 신호이다. 이러한 특징을 이용하여 채널의 추정 계수로 잡음 분산을 추정하는 방법이 기존에 제시되어 있다. 여기서 제안하는 알고리즘은 기존 알고리즘인 PSA(partial sample average)와 비교해 연산량에서 차이가 거의 없이 구현되며, 3GPP TDD[1]에서의 모의 실험을 통하여 기존 알고리즘보다 더 정확한 분산 값을 찾아냄을 확인하였다.

  • PDF