• Title/Summary/Keyword: minimum-infinity norm solution

Search Result 3, Processing Time 0.017 seconds

Analysis on a Minimum Infinity-norm Solution for Kinematically Redundant Manipulators

  • Insoo Ha;Lee, Jihong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.130-139
    • /
    • 2002
  • In this paper, at first, we investigate existing algorithms for finding the minimum infinity-norm solution of consistent linear equations and then propose a new algorithm. The proposed algorithm is intended to includes the advantages of computational efficiency as well as geometric explicitness. As a practical application example, optimum trajectory planning for redundant robot manipulators is considered. Also, an efficient approach avoiding discontinuity in trajectory is proposed by resolving the non-uniqueness problem of minimum infinity-norm solution. To be specific, the proposed method for checking possible discontinuity does not need any other algorithms in checking the possibility of discontinuity while previous work needs specially designed checking courses. To show the usefulness of the proposed techniques, an example calculating minimum infinity-norm solution for comparing the computational efficiency as well as the trajectory planning for a redundant robot manipulator are included.

A study on the difference on the manipulability for redundant and nonredundant robot manipulators (여유 자유도 로봇과 비 여유 자유도 로봇의 조작도 해석상의 차이점에 관한 연구)

  • 이영일;이지홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1609-1612
    • /
    • 1997
  • Kinematically redundantant manipulators have a nimber of potential advantages over nonredundant ones. Questions associated with manipulability measures for (non)redundant manipulators derived by minimum 2-norm solution and minimum infinity-norm solution in unit joint velocity are examined in detail.

  • PDF

Global torque optimization of redundant manipulator using dynamic programming

  • Shim, Ick-Chan;Yoon, Yong-San
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.811-814
    • /
    • 1997
  • In this paper, the torque optimization of a kinematically redundant manipulator for minimizing the torque demands is discussed. The minimum torque solution based on a local optimization has been known to encounter the instability problem and then the global torque optimization was suggested as one of the alternatives. Herein, by adopting the infinity-norm rather than the 2-norm for the magnitude of torques, we are to propose a new cost function more advantageous to the avoidance of torque limits. By the way, a solution to the global torque optimization formulated with the new cost function can not be obtained by the previous methods due to their difficulties such as inability to treat discontinuous cost functions and various constraints on the joint variables. Thus, to overcome those deficiencies, we are developing a new approach using the dynamic programming. The effectiveness of the proposed method is shown through simulation examples for a 3-link planar redundant manipulator.

  • PDF