• Title/Summary/Keyword: minimum volume design

Search Result 121, Processing Time 0.027 seconds

동위원소 생산공정에서 발생한 방사성 폐기물 장기저장소 온도평가 (Temperature Evaluation on Long-term Storage of Radioactive Waste Produced in the Process of Isotope Production)

  • 정남균;조대성
    • 대한기계학회논문집B
    • /
    • 제40권7호
    • /
    • pp.471-475
    • /
    • 2016
  • 본 연구는 의료용 동위원소 생산공정에서 발생하는 방사성폐기물을 저장하는 장기저장소의 온도를 두 가지 방법으로 평가한 결과를 보여준다. 방사성폐기물에서 발생하는 열을 Volume source와 Point source로 가정하여 장기저장소의 온도를 평가한 결과, 폐기물 저장위치에 따른 최대온도분포는 유사하게 나타났으나 그 크기에 있어서 최대 $5^{\circ}C$ 정도의 차이를 보였다. 따라서, 개념설계를 위해서는 해석 시간이 오래 걸리는 Volume source를 이용한 3차원 해석보다는 Point source를 이용한 2차원 해석이 보다 효율적이지만, 상세 설계를 위한 정확한 해석 결과를 얻기 위해서는 Volume source를 이용한 3차원 해석이 수반되어야 함을 알 수 있다.

금속분말 사출성형 제품의 공정능력분석에 관한 연구 (A Study on the Process Capability Analysis of MIM Product)

  • 최병기;이동길;최병희
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.57-64
    • /
    • 2010
  • Metal Injection Molding (MIM) is attractive because it produces consistent, complex-geometry components for high-volume, high-strength, and high-performance applications. Also MIM using in optical communication field, display field, and semi-conductor field is a cost-effective alternative to metal machining or investment casting parts. It offers tremendous single-step parts consolidation potential and design flexibility. The objective of this paper is to study the suitability of design, flow analysis, debinding and sinterin processes, and capability analysis. The suitable injection conditions were 0.5~1.5 second filling time, 11.0~12.5 MPa injection pressure derived from flow analysis. The gravity of the product is measured after debinding an sintering. The maximum and minimum gravity levels are 7.5939 and 7.5097. the average and standard deviation are 7.5579 and 0.0122; when converted into density, the figure stands at 98.154%. According to an analysis of overall capacity, PPM total, which refers to defect per million opportunities(DPMO), stands at 166,066.3 Z.Bench-the sum of defect rates exceeding the actual lowest and highest limits-is 0.97, which translates into the good quality rate of around 88.4% and the sigma level of 2.47.

6kW급 태양열 온수급탕 시스템의 실증실험 및 분석(제3보 최적설계 및 경제성평가) (Verification Experiment and Analysis for 6kW Solar Water Heating System(Part 3 : Optimum Design and Economic Evaluation))

  • 최봉수;이봉진;강채동;홍희기
    • 설비공학논문집
    • /
    • 제17권1호
    • /
    • pp.16-24
    • /
    • 2005
  • The goal of the present paper is to show the optimum design and operation conditions on 6 kW solar water heating system by using computer simulation with verified modelling. As the object functions, we took not only the amount of acquired and auxiliary heat but LCC, which has a relative importance and decisive role in economy. As expected, the maximum heat is acquired at the slope of collector with the equal degree to the latitude, facing the south. The capacity increase of the circulation pump and the storage tank lead to the increase of acquired heat and the decrease of auxiliary heat, but do not necessarily give economical advantages owing to additional electrical power consumption. In the present system, the minimum LCC can be obtained at the storage tank volume of 450 L and the mass flow rate of 0.344 kg/s.

자력소호 가스차단부의 소호특성 (Arc-Extinguishing Characteristics of A Rotary-Arc Gas Circuit Breaker)

  • 신영준;박경엽;송기동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1593-1598
    • /
    • 1994
  • Recently rotary-arc, thermal expansion and their composite interrupters are widely used in the distribution power system because they have lots of advantages in making the larger interrupting capacity, the smaller size, the lighter weight and the less surge. A model interrupter of rotary-arc type, which has constant stroke and thermal expansion volume, was studied by varying the design parameters, i.e. the number of turns of the driving coil, the inner diameter of the moving contact, the gas pressure and the shape of the fixed contact for this project. Short cicuit current interrupting tests were conducted to the model interrupters by varying the requirements from 42% to 175% of the test voltage, interrupting current and transient recovery voltage for the test duty No.4 of 7.2kV 12.5kA single phase test. The pressure rise, minimum and maximum arcing times were analyzed for each model interrupter. All types of model interrupters showed good interrupting performances and sufficient design margins for the ratings.

  • PDF

에어챔버가 설치된 송수관로에서의 수격현상 (Waterhammer in the Transmission Pipeline with an Air Chamber)

  • 김경엽
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.177-183
    • /
    • 2002
  • The field tests on the waterhammer were carried out in the pump pipeline system with an air chamber. The effects of the input variables and the design parameters for the air chamber were investigated by both the numerical calculations and the experiments. Because the waterhammer problems as a result of the pump power failure were the most important, these situations were carefully studied. Among the input variables used in the waterhammer analysis, the polytropic exponent, the discharge coefficient and the wavespeed had influence on the simulated results in that order, and were calibrated in comparison with the experimental results. As the initial air volume in a vessel increased, the period of waterhammer increased and the pressure variation decreased, resulting from the reduction of the rate of pressure change in the air chamber. Using smaller orifice in the bypass pipe, the pressure rise was suppressed in some degree and the pressure surge was dissipated more rapidly as time passed. The simulations were in fairly good agreement with the measured values until 1∼2 periods of waterhammer. Not only the maximum and minimum pressures in the pipe1ine but also those occurring times were reasonably predicted. The computer program developed in this study will be useful in designing the optimum parameters of an air chamber for the real pump pipeline system.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • 제56권4호
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

불확실성을 고려한 접합부의 최적설계에 관한 연구 (The Study of Reliability Based Optimization Design for Connection)

  • 신수미;윤혁기;김혜민
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.26-32
    • /
    • 2016
  • 일반적으로 구조물에는 하중, 재료상수, 부재크기와 구조해석 등의 오차에 대한 불확실성을 존재하고 이러한 불확실성은 구조물의 최적설계에 많은 영향을 준다. 확률론적 해석은 급속하게 발전하고 있고 여러 불확실성을 고려해야 하는 구조설계에서 중요한 기법으로 사용되고 있다. 본 논문에서는 구조물에서 발생하는 불확실성을 고려하기 위하여 신뢰성 해석을 통하여 신뢰도 지수를 산출하였으며 이 값을 최적설계의 제약조건으로 설정하여 확률론적 최적설계를 수행하였다. 최적설계 결과 기존의 불확실량이 고려되지 않은 확정론적 최적설계의 결과 값보다 불확실량이 고려된 최적설계 결과값이 더 크게 나타났으나 불확실성을 고려하는 경우가 구조물의 안정성이 더 확보되는 것으로 생각된다. 본 논문에서는 최적화 기법 중 가장 강력하다고 알려진 SQP(순차이차계획법)을 이용하여 최적화를 수행하였는데 SQP법은 최적화 문제의 정식화를 반복계산 하는 것에 바탕을 두고 각 반복계산에 있어서는 2차 프로그래밍 부속 문제의 해를 구하는데 그 기본을 두는 방법이다. 또 불확실량을 고려한 최적설계를 위해 신뢰성을 기초한 최적설계를 수행하여 신뢰도지수와 파괴확률을 계산하였다. 확정론적 최적설계와 달리 치수, 모양, 재료와 작용하중들의 양에 신뢰성해석을 수행하여 나온 신뢰도지수와 파괴확률을 앞에서 계산한 최적화 과정의 제약조건식에 가적으로 설정하여 최적설계를 수행하였다.T-stub 접합부를 예제로 적용하였으며 해석 결과의 기존문헌과 비교하였다.

위상 최적 설계를 통한 복합소재 대차프레임용 제동장치 브래킷의 경량화 연구 (Lightweight Design of Brake Bracket for Composite Bogie Using Topology Optimization)

  • 이우근;김정석
    • 대한기계학회논문집A
    • /
    • 제39권3호
    • /
    • pp.283-289
    • /
    • 2015
  • 본 연구에서는 위상 최적 설계 기법을 활용하여 복합소재 대차프레임의 제동장치 브래킷 경량 설계를 수행하였다. 제동장치 브래킷은 12t 와 9t 로 각각 두 가지 모델을 대상으로 하였다. 위상최적화시 설계영역은 단면적이 가장 넓은 수직면과 수평면으로 설정하였다. 제한조건은 제동장치 브래킷의 Z 축의 변위 값을 초기 변위 값보다 2.5% 증가이고, 목적함수는 제동장치 브래킷의 질량 최소화로 하였다. 또한 최적화 계산 시간을 줄이기 위해 대차프레임을 생략하고 대차프레임 대신 1D beam 요소를 적용하여 Z 축 변위를 기준으로 전체모델과 동일하게 등가시켜 두 모델간의 상관성을 확보 하였다. 그 결과 12t 모델은 60kg, 9t 모델은 31kg 감소하였고, 최적화 모델의 유한요소해석을 통하여 안전성을 검증하였다.

Optimization of Parameters for LCL Filter of Least Square Method Based Three-phase PWM Converter

  • Zheng, Hong;Liang, Zheng-feng;Li, Meng-shu;Li, Kai
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1626-1634
    • /
    • 2015
  • LCL filters are widely used in three-phase PWM converter for its advantages of small volume, low cost and inhibition of high frequency current harmonic. However, it is difficult to optimize its design because its parameters are mutually influenced while the value of each parameter for LCL filter has impacts on the converter's cost and size. In this paper, the target of optimization is to minimize the parameter values of LCL filter, and an optimization method for parameters of LCL filter of three-phase PWM converter based on least square method is proposed. With this method, a quantitative calculation of the harmonic component of the converter’s side phase voltage is performed first, and then the quantitative relationship between phase voltage harmonics and grid phase current harmonics is analyzed. After that, the attenuation requirement of each harmonic is obtained by taking into account the requirements for each harmonic component of grid current. Then according to the optimization objective, the objective function with minimum harmonic attenuation deviation is established, and least squares method is adopted for three-dimensional global searching of parameters for LCL filter. Thus, the designed harmonic attenuation curve approximates the minimum attenuation requirements, and the optimized LCL filter parameters are obtained. Finally, the effectiveness of the method is verified by the experiments.