• Title/Summary/Keyword: minimum velocity

Search Result 626, Processing Time 0.212 seconds

LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS (균일입구유속 조건의 나선관 입구영역의 층류 유동)

  • Kim, Y.I.;Park, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation (국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석)

  • 정용만;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

Global Minimum-Jerk Trajectory Planning of Space Manipulator

  • Huang Panfeng;Xu Yangsheng;Liang Bin
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.405-413
    • /
    • 2006
  • A novel approach based on genetic algorithms (GA) is developed to find a global minimum-jerk trajectory of a space robotic manipulator in joint space. The jerk, the third derivative of position of desired joint trajectory, adversely affects the efficiency of the control algorithms and stabilization of whole space robot system and therefore should be minimized. On the other hand, the importance of minimizing the jerk is to reduce the vibrations of manipulator. In this formulation, a global genetic-approach determines the trajectory by minimizing the maximum jerk in joint space. The planning procedure is performed with respect to all constraints, such as joint angle constraints, joint velocity constraints, joint angular acceleration and torque constraints, and so on. We use an genetic algorithm to search the optimal joint inter-knot parameters in order to realize the minimum jerk. These joint inter-knot parameters mainly include joint angle and joint angular velocities. The simulation result shows that GA-based minimum-jerk trajectory planning method has satisfactory performance and real significance in engineering.

Near-Minimum Time Trajectory Planning of Two Robots with Collision Avoidance (두 대의 로봇의 근사 최소시간 제어를 위한 충돌회피 궤적 계획)

  • Lee, Dong-Soo;Chong, Nak-Young;Suh, Il-Hong;Choi, Dong-Hoon;Lyou, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.5
    • /
    • pp.1495-1502
    • /
    • 1991
  • 본 연구에서는 동일 작업 공간내에서 두대의 로봇이 각각의 토크의 제한 조건 과 충돌 회피 조건을 만족하면서 근사 최소 시간에 지정된 경로를 주행하기 위한 궤적 계획법을 제안하고자 한다. 이때, 동작 우선도에 의하여 한 대의 로봇은 주 로봇, 다른 한 대의 로봇은 종 로봇으로 지정되는데 주 로봇은 입력 토크의 제한조건을 만족 하며 주어진 경로를 최소 시간에 움직이도록 궤적 계획을 하였으며, 종 로봇은 주 로 봇과의 충돌을 피하고 입력 토크의 제한 조건을 만족하며 주어진 경로를 근사 최소 시 간에 움직이도록 하였다.

An Elastohydrodynamic Lubrication of Elliptical Contacts : Part II - The Effect of Spin Motion (타원접촉의 탄성유체윤활 : 제2보 - 스핀운동의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.23 no.2
    • /
    • pp.49-55
    • /
    • 2007
  • A numerical analysis of elastohydrodynamic lubrication of elliptical contacts with both rolling and spinning has been carried out. A finite difference method with non-uniform grid systems and the Newton-Raphson method are applied to solve the problems. The velocity vectors resulting from combined spinning and rolling/sliding motion lead to asymmetric pressure distributions and film shapes. Pressure distributions, film contours and variations of the minimum and central film thicknesses are compared with various spin-roll ratios. Reduction of the minimum film thickness under spinning is remarkable whereas the central film thickness is relatively less. The spin motion have large effect on variations of the minimum film thickness with load parameter which are small in pure rolling/sliding cases. Therefore present numerical scheme can be used in the analysis of general elliptical contact EHL problems and further studies are required.

A Study on the Minimum Safe Distance between Two Vessels in Confined Waters

  • Lee, Chun-Ki;Moon, Serng-Bae
    • Journal of Navigation and Port Research
    • /
    • v.38 no.6
    • /
    • pp.561-565
    • /
    • 2014
  • This paper is mainly concerned with the interaction effects between two vessels and sidewall with a mound. Experimental study on hydrodynamic forces between ship and sidewall with a mound was already shown in the previous paper, measured by varying the distances between ship and sidewall. The ship maneuvering simulation was conducted to find out the minimum safe distance between vessels, which is needed to avoid sea accident in confined waters. From the inspection of this investigation, it indicates the following result. When and if one vessel passes the other vessel through the proximity of sidewall with a mound, the spacing between two vessels is needed for the velocity ratio of 1.2, compared to the case of 1.5. Also, for the case of ship-size estimation, the ship maneuvering motion is more affected by interaction effects for the overtaken small vessel, compared to the overtaking large vessel.

Trajectory Planning of Articulated Robots with Minimum-Time Criterion (최소시간을 고려한 다관절 로봇의 궤적계획)

  • Choi, J.S.;Yang, S.M.;Kang, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.122-127
    • /
    • 1996
  • The achievement of the optimal condition for the task of an industrial articulated robot used in many fields is an important problem to improve productivity. In this paper, a minimum-time trajectory for an articulated robot along the specified path is studied and simulated with a proper example. A general dynamic model of manipulator is represented as a function of path distance. Using this model, the velocity is produced as fast as possible at each point along the path. This minimum-time trajectory planning module together with the existing collision-free path planning modules is utilized to design the optimal path planning of robot in cases where obstacles present.

  • PDF

An Experimental Study for Fluidized Bed Behaviour with Temperature Change. (유동층(流動層)의 온도변화(溫度變化)에 따른 유동특성(流動特性)에 관한 실험적(實驗的) 연구(硏究))

  • Baek, Ko-Kil;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.6 no.1
    • /
    • pp.3-11
    • /
    • 1986
  • Minimum fludizing velocities and voidages were investigated for closely sized sand and magnesia particles with mean diameters in the range of $297-841\;{\mu}m$ over the temperature between 15 and $1.000^{\circ}C$. Boundaries between changing behaviour at $Re_{mf}=14$ and Ar=17,000 were observed. In beds of fine particles in Geldart's group "B", the minimum fluidizing velocity ($U_{mf}$) decreased as temperature increased, but not as much as expected on account of the gas viscosity increase, furthermore the increase in the minimum fluidizing voidage (${\in}_{mf}$). With larger particles in group "D", $U_{mf}$ increased, first, with temperature increase because of reduced gas density, and depending on the particle size, $U_{mf}$ reduced as flow conditions moved from turbulent to laminar. Among the correlations predicting $U_{mf}$, Ergun equation agreed best with the experimental data providing that the change in ${\in}_{mf}$ according to temperature is allowed for.

  • PDF

Flow characteristics after water inrush from the working face in karst tunneling

  • Wu, J.;Li, S.C.;Xu, Z.H.;Pan, D.D.;He, S.J.
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.407-419
    • /
    • 2018
  • In order to investigate flow characteristics after water inrush from the working face in process of karst tunnel construction, numerical calculation for two class case studies of water inrush is carried out by using the FLUENT software on the background of Qiyueshan tunnel. For each class water inrush from the tunnel face, five cases under different water-inrush velocity are simulated and researched. Three probing lines are selected respectively in the left tunnel, cross passage, right tunnel and in the height direction of the tunnel centerline. The variation characteristics of velocity and pressure on each probing line under the five water-inrush velocities are analyzed. As for the selected four groups probing lines in the tunnels, the change rules of velocity and pressure on each group probing lines under the same water-inrush velocity are discussed. Finally, the water flow characteristics after inrush from the tunnel face are summarized by comparing the case studies. The results indicate that: (1) The velocity and pressure change greatly at the intersection area of the cross passage and the tunnels. (2) The velocity nearby the tunnel side wall is the minimum, while it is the maximum in the middle position. (3) The pressure value of every cross section in the tunnels is basically fixed. (4) As water-inrush velocity increases, the flow velocity and pressure in the tunnels also increase. The former is approximately proportional to their respective water-inrush velocity, while the latter is not. The research results provide a theoretical basis for making scientific and rational escape routes.