• Title/Summary/Keyword: minimum mud density

Search Result 3, Processing Time 0.019 seconds

Determination Method of Suitable Mud Density While Drilling through Confined Aquifer and Its Application (피압대수층을 통과하는 대심도 시추 중 적정이수밀도 결정 방법 및 적용 사례)

  • Woon Sang Yoon;Yoosung Kim;Hyeongjin Jeon;Yoonho Song;Changhyun Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • During deep drilling, confined aquifers can present various challenges such as the inability to remove cuttings, rapid groundwater influx, and mud loss. Particularly in flowing well conditions, it is essential to apply the suitable mud density since the aquifer can generates an overpressurized condition. This paper proposes a method for determining the suitable mud density while drilling (SMD) through confined aquifers using mud window analysis and applies it to a case study. The minimum mud density at each depth, which represents the lower limit of the mud window, is determined by the equivalent mud density pore pressure gradient (or by adding a trip margin) at that depth. The pore pressure gradient of a confined aquifer can be calculated using the piezometric level or well head pressure of the aquifer. As the borehole reaches the confined aquifer, there is a significant increase in pore pressure gradient, which gradually decreases with increasing depth. The SMD to prevent a kick can be determined as the maximum value among the minimum mud densities in the open hole section. After entering the confined aquifer, SMD is maintained as the minimum mud density at the top of the aquifer during the drilling of the open hole section. Additionally, appropriate casing installation can reduce the SMD, minimizing the risk of mud loss or invasion into the highly permeable aquifer.

Meiobenthic Community Structure in Mud Flat and Sand Flat in Yeochari, Ganghwado (강화도 여차리 니질갯벌과 사질갯벌에 서식하는 중형저서동물의 군집구조)

  • Kim, Dong Sung;Min, Won Gi;Je, Jong Geel
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.43-55
    • /
    • 2004
  • Meiobenthic community structure was studied in intertidal mud flat and sand flat of Yeochari in Ganghwado in May and August, 1998. Sixteen groups of meiofauna were found at all study sites in the Yeochari tidal flats. Nematodes were the most dominant animal group among the meiofaunal groups as a whole. Sarcomastigophorans, harpacticoid copepods, nauplius larvae of crustaceans and ciliophorans which were also important components of the meiofaunal community. All of these five faunal groups comprised more than 90% of total meiofauna. The maximum total density of meiobenthos was $5.8{\times}10^6ind./m^2$ at the station of sand flat in August and the minimum density was $4.0{\times}10^6ind./m^2$ at same station in May. Biomass of meiobenthos was $1.5g/m^2$(May), $2.3g/m^2$(August) at mud flat and $1.7g/m^2$(May), $2.6g/m^2$(August) at sand flat. At the station of mud flat in May, the highest density was observed within 1cm in depth of upper sediment and steeply decreased increasing depth of sediment. At the sand flat station in August, the highest density was also observed within 1cm in depth of upper sediment and decreased with depth, while the concentration of the animals at the surface was not conspicuous as the mud flat. The value of N/C(nematodes/benthic harpacticoids) ratio was the highest at the station of sand flat in May and the lowest at the sand flat in August.

  • PDF

A Low-Complexity CLSIC-LMMSE-Based Multi-User Detection Algorithm for Coded MIMO Systems with High Order Modulation

  • Xu, Jin;Zhang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1954-1971
    • /
    • 2017
  • In this work, first, a multiuser detection (MUD) algorithm based on component-level soft interference cancellation and linear minimum mean square error (CLSIC-LMMSE) is proposed, which can enhance the bit error ratio (BER) performance of the traditional SIC-LMMSE-based MUD by mitigating error propagation. Second, for non-binary low density parity check (NB-LDPC) coded high-order modulation systems, when the proposed algorithm is integrated with partial mapping, the receiver with iterative detection and decoding (IDD) achieves not only better BER performance but also significantly computational complexity reduction over the traditional SIC-LMMSE-based IDD scheme. Extrinsic information transfer chart (EXIT) analysis and numerical simulations are both used to support the conclusions.