• Title/Summary/Keyword: minimum mean-square error equalization

Search Result 25, Processing Time 0.022 seconds

Performance analysis of WPM-based transmission with equalization-aware bit loading

  • Buddhacharya, Sarbagya;Saengudomlert, Poompat
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.184-196
    • /
    • 2019
  • Wavelet packet modulation (WPM) is a multicarrier modulation (MCM) technique that has emerged as a potential alternative to the widely used orthogonal frequency-division multiplexing (OFDM) method. Because WPM has overlapped symbols, equalization cannot rely on the use of the cyclic prefix (CP), which is used in OFDM. This study applies linear minimum mean-square error (MMSE) equalization in the time domain instead of in the frequency domain to achieve low computational complexity. With a modest equalizer filter length, the imperfection of MMSE equalization results in subcarrier attenuation and noise amplification, which are considered in the development of a bit-loading algorithm. Analytical expressions for the bit error rate (BER) performance are derived and validated using simulation results. A performance evaluation is carried out in different test scenarios as per Recommendation ITU-R M.1225. Numerical results show that WPM with equalization-aware bit loading outperforms OFDM with bit loading. Because previous comparisons between WPM and OFDM did not include bit loading, the results obtained provide additional evidence of the benefits of WPM over OFDM.

Multi-Stage Turbo Equalization for MIMO Systems with Hybrid ARQ

  • Park, Sangjoon;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.333-339
    • /
    • 2016
  • A multi-stage turbo equalization scheme based on the bit-level combining (BLC) is proposed for multiple-input multiple-output (MIMO) systems with hybrid automatic repeat request (HARQ). In the proposed multi-stage turbo equalization scheme, the minimum mean-square-error equalizer at each iteration calculates the extrinsic log-likelihood ratios for the transmitted bits in a subpacket and the subpackets are sequentially replaced at each iteration according to the HARQ rounds of received subpackets. Therefore, a number of iterations are executed for different subpackets received at several HARQ rounds, and the transmitted bits received at the previous HARQ rounds as well as the current HARQ round can be estimated from the combined information up to the current HARQ round. In addition, the proposed multi-stage turbo equalization scheme has the same computational complexity as the conventional bit-level combining based turbo equalization scheme. Simulation results show that the proposed multi-stage turbo equalization scheme outperforms the conventional BLC based turbo equalization scheme for MIMO systems with HARQ.

Reduced-state sequence estimation for trellis-coded 8PSK/cyclic prefixed single carrier (트렐리스 부호화된 8PSK/CPSC를 위한 RSSE 방식)

  • 고상보;강훈철;좌정우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.20-23
    • /
    • 2003
  • A reduced-state sequence estimation(RSSE) for trellis-coded (TC) 8PSK/cyclic prefixed single carrier(CPSC) with minimum mean-square error-liner equalization(MMSE-LE) on frequency-selective Rayleigh fading channels is proposed. The Viterbi algorithm (VA) is used to search for the best path through the reduced-state trellis combined equalization and TCM decoding. The symbol error probability of the proposed scheme is confirmed by computer simulation.

  • PDF

Pilot Symbol Assisted Channel Estimation and Equalization for OFDM Systems in Doubly Selective Channels (주파수 선택적 시변 채널 OFDM 시스템에서의 파일럿 심볼을 이용한 채널 예측 및 등화)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1408-1418
    • /
    • 2007
  • In this paper, we analyze the performance of pilot symbol assisted channel estimation and equalization schemes for OFDM systems over frequency-selective time-varying channels and propose methods to improve the system performance. In the least square(LS) and linear minimum mean square error(MMSE) channel estimation, time domain windowing is introduced for banding the frequency domain channel matrix. The linear MMSE and decision feedback equalization schemes are employed with the pilot symbols for channel estimation taken into account in the equalization process. To reduce computational complexity, the band LU matrix factorization algorithm is introduced in solving the linear systems involved in the equalization, and the performances are compared with the known previous results by computer simulations. When time domain windowing is employed in the decision feedback equalization, the matrix related with the decision feedback process is shown to be unhanded and the resultant performance degradation is analyzed.

MRC MMSE Equalization for SC-FDE in Amplify-and-Forward Relaying Networks (AF 방식 중계기 네트워크에서의 SC-FDE를 위한 MRC MMSE 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2011
  • Relay-assisted multiple input multiple output (MIMO) technique has become a promising candidate for next generation broadband wireless communications. In this paper, we propose maximum ratio combining (MRC) minimum mean-square-error (MMSE) equalization for single carrier-frequency domain equalizer (SC-FDE) in amplify-and-forward (AF) relaying networks. The performance of SC-FDE system can be improved considerably by achieving both the diversity gain and the MMSE equalization gain when the signals from source-destination (S->D) and source-relay-destination (S->R->D) are combined and equalized by means of the MMSE criteria. We find the weighting coefficients of MRC combining and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying networks. Simulation results show that the proposed relay-based system considerably outperforms the conventional SC-FDE system.

Improvement of Minimum MSE Performance in LMS-type Adaptive Equalizers Combined with Genetic Algorithm

  • Kim, Nam-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper the Individual tap - Least Mean Square(IT-LMS) algorithm is applied to the adaptive multipath channel equalization using hybrid-type Genetic Algorithm(GA) for achieving lower minimum Mean Squared Error(MSE). Owing to the global search performance of GA, LMS-type equalizers combined with it have shown preferable performance in both global and local search but those still have unsatisfying minimum MSE performance. In order to lower the minimum MSE we investigated excess MSE of IT-LMS algorithm and applied it to the hybrid GA equalizer. The high convergence rate and lower minimum MSE of the proposed system give us reason to expect that it will perform well in practical multi-path channel equalization systems.

Iterative Interstream Interference Cancellation for MIMO HSPA+ System

  • Yu, Hyoug-Youl;Shim, Byong-Hyo;Oh, Tae-Won
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • In this paper, we propose an iterative interstream interference cancellation technique for system with frequency selective multiple-input multiple-output (MIMO) channel. Our method is inspired by the fact that the cancellation of the interstream interference can be regarded as a reduction in the magnitude of the interfering channel. We show that, as iteration goes on, the channel experienced by the equalizer gets close to the single input multiple output (SIMO) channel and, therefore, the proposed SIMO-like equalizer achieves improved equalization performance in terms of normalized mean square error. From simulations on downlink communications of $2{\times}2$ MIMO systems in high speed packet access universal mobile telecommunications system standard, we show that the proposed method provides substantial performance gain over the conventional receiver algorithms.

Decision Feedback Equalizer for DS-UWB Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.500-508
    • /
    • 2008
  • Direct-sequence ultra-wideband(DS-UWB) system is being considered as one of promising transmission technologies for wireless personal area networks(WPANs). Due to relatively low spreading factors and huge bandwidth of transmit signal, a DS-UWB receiver needs to be equipped not only with a rake receiver but also with an equalizer, of which the equalizer is not required for traditional direct-sequence code division multiple access(DS-CDMA) systems. The number of rake fingers is limited in practice, influencing the performance of the subsequent equalizer. In this paper, we derive a decision feedback equalizer(DFE) for DS-UWB systems based on the minimum mean square error(MMSE) criterion, and investigate the impact of various parameters on the DFE performance in realistic scenarios. In particular, we propose an approach to improving the performance of the DFE using additional channel estimates for multipaths not combined in the rake receiver, and discuss how the accuracy of channel estimation affects desirable DFE configuration. Moreover, we present simulation results that show the impact of turbo equalization on the DFE performance.

Blind MMSE Equalization of FIR/IIR Channels Using Oversampling and Multichannel Linear Prediction

  • Chen, Fangjiong;Kwong, Sam;Kok, Chi-Wah
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.162-172
    • /
    • 2009
  • A linear-prediction-based blind equalization algorithm for single-input single-output (SISO) finite impulse response/infinite impulse response (FIR/IIR) channels is proposed. The new algorithm is based on second-order statistics, and it does not require channel order estimation. By oversampling the channel output, the SISO channel model is converted to a special single-input multiple-output (SIMO) model. Two forward linear predictors with consecutive prediction delays are applied to the subchannel outputs of the SIMO model. It is demonstrated that the partial parameters of the SIMO model can be estimated from the difference between the prediction errors when the length of the predictors is sufficiently large. The sufficient filter length for achieving the optimal prediction is also derived. Based on the estimated parameters, both batch and adaptive minimum-mean-square-error equalizers are developed. The performance of the proposed equalizers is evaluated by computer simulations and compared with existing algorithms.

  • PDF

BER Performance of OFDM Combined with TDM Using Frequency-Domain Equalization

  • Gacanin, Haris;Takaoka, Shinsuke;Adachi, Fumiyuki
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.34-42
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) combined with time division multiplexing (TDM), in this paper called OFDM/TDM, can overcome the high peak-to-average-power ratio (PAPR) problem of the conventional OFDM and improve the robustness against long time delays. In this paper, the bit error rate (BER) performance of OFDM/FDM in a frequency-selective Rayleigh fading. channel is evaluated by computer simulation. It is shown that the use of frequency-domain equalization based on minimum mean square error criterion (MMSE-FDE) can significantly improve the BER performance, compared to the conventional OFDM, by exploiting the channel frequency-selectivity while reducing the PAPR or improving the robustness against long time delays. It is also shown that the performance of OFDM/FDM designed to reduce the PAPR can bridge the conventional OFDM and single-carrier (SC) transmission by changing the design parameter.