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Abstract

In this paper the Individual tap - Least Mean Square(IT-LMS) algorithm is applied to the adaptive multipath channel
equalization using hybrid-type Genetic Algorithm(GA) for achieving lower minimum Mean Squared Error(MSE).
Owing to the global search performance of GA, LMS-type equalizers combined with it have shown preferable
performance in both global and local search but those still have unsatisfying minimum MSE performance. In order
to lower the minimum MSE we investigated excess MSE of IT-LMS algorithm and applied it to the hybrid GA
equalizer. The high convergence rate and lower minimum MSE of the proposed system give us reason to expect that
it will perform well in practical multi-path channel equalization systems.
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[ . Introduction

Since GA is a powerful optimization technique which
is robust and problem-independent™, it has been
applied in many research field. The GA-based methods
are expected to be efficient for wireless channel
equalization problems because GA is a global optimi-
zation technique and it is able to find the global
optimum solution without being trapped in local
minima. In adaptive signal processing, GA was applied
to the weight training of the neural networks™, the
parameter estimation of linear and nonlinear adaptive
filters”) and a maximum likelihood equalizer for multi-
path channel equalization™,

But GA has the limitations of poor performance in
searching for local solution!’. To overcome this conver-
gence problem in local solution, the hybrid structure
which combines GA and LMS algorithm in system
identification was proposed by S. H. Han and et al’,
Its convergence rate is still not satisfying in multipath
channel equalization. Besides still slow convergence, it
can not lower its minimum MSE because fluctuations
around minimum MSE of LMS algorithm induce big
excessive MSE and they may hinder fine searching for
optimum local solution.

IT-LMS algorithm introduced in [6] has fast conver-
gence and simple updating mechanism. It can be a
preferable candidate for fine local tuning after global

search by GA. The reason for investigating this method
is that it provides lower excess MSE than LMS
algorithm as well as faster convergence. In this work
we show that it has lower excess MSE and by com-
puter simulations the proposed hybrid structure has
desirable minimum MSE for multi-path channel equa-
lization.

This paper is organized in the following manner.
Section 2 presents GA for multi-path equalization.
Section 3 introduces IT-LMS algorithm briefly and
presents its excess MSE. In section 4 the proposed
combined structure is explained and experimental re-
sults and discussions are presented.

II. Multipath Channel and Equalizers

In Fig. 1 a block diagram of a typical digital com-
munication system is shown. We can consider the
whole system between the data source and the receiver
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Fig. 1. Typical digital communication system.
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Fig. 2. TDL equalizer structure.

as a discrete channel with additive noise. the channel
impulse response is denoted by A(r).

At the receiver the filtered signal, which is distorted
by multipath fading and corrupted by additive noise,
w(?). The transfer function of the multipath channel
with M elements can be written as

H(z)=§h,» P )

The equalizer input is sampled every T seconds and
this sampled signal, x(k), is presented to the TDL
(Tapped Delay Line) equalizer. The output, (%), which
is to be a good approximation to the transmitted symbol
d(k). The equalizer input is given by

x(B) = Zh,d(k— )+ w(k) ¥))

In the equation (2) w(#) is additive white gaussian
noise. The output sample y(#) at time & of the TDL
equalizer is

B = Sekbatk=D) = C(HTXA )
where

X(B=[x(B),x(k—1),....x(k— D17

CR=lc,(B,....ciB),...,c.(BT

c{k) is the i-th tap coefficient

For simplicity, we assume all the values are real. The
error related to this symbol becomes

e(k) = d(k) — y(k) )
II. Genetic Algorithm in TDL Equalizer

GA consists of three processes: fitness evaluation,
selection, crossover and mutation emulating the
evolutionary behavior of biological systems. It starts
with a set of equalizer tap coefficient vectors as parent
chromosomes. The number of randomly generated ini-
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Fig. 3. GA in TDL equalizer.

tial coefficient vectors, M, are correspondent to a
population of size M. In the fitness evaluation session,
a fitness value for j-th chromosome is defined as

Blogk—
MSE,= 51— "8 dtk— 9~ 5,(k= D7’ )

Block is the number of accumulated errors, d(k) is
the desired output and y,(%) is the estimated output for
j-th chromosome. In the selection process, the best
chromosome having the smallest fitness value becomes
the best parent from the current population. Here, the
best is copied to the TDL as a current filter coefficient
vector C(k).

%electlon reinsertion
best >
M/2
M
worst
old parents new parents

Fig. 4. Crossover and mutation process.
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From the M parents which are in order of value from
the best to the worst, the first half, M/2 "good" parents
are selected as qualified parents for next mutation
process but the remaining M/2 "bad" parents are
discarded.

The first half, M/2 "good" parents go through
crossover processm and resulting M/2 parents are
placed in the room of M/2 vacant places which were
for the M/2 "bad" parents. That is, the selected M/2
good parents and their crossover processed M/2
versions, total M parents, are to undergo the following
mutation session.

The intention of the mutation operator is the
introduction of some extra variability into the popu-
lation. A mutation feature is to guard against premature
convergence and to ensure that all solutions in the
search space can ultimately be reached. We use the
random mutation method®™”, With the help of mu-
tation rate, f, and the independent, identically N(O,
1)-distributed random number D, the offspring vector g
in Fig. 4 becomes new parents as depicted in (6).

new parvents=g+ f- D ©)

The mutation process is applied to M-1 chromosomes
in stead of M, because the best chromosome is
reinserted to the new parents group. In the case that the
chromosomes in the current population are completely
replaced by the offsprings, one can argue that this
strategy may make the best chromosome of the
population fail to reproduce offspring in the next
generation!'”. So it is usually combined with elitist
strategy where one or a few of the best chromosomes
are reinserted into the succeeding generation. The
strategy may increase the speed of domination of a
population by a super chromosome, but on balance it
appears to improve the performance!’. All these
processes are performed when an input sample is
arrived at the equalizer. The new parents go through
fitness and selection process, and the best is copied to
the TDL equalizer as an updated filter coefficient
vector, C(k+1).

IV. Transfer from GA to IT-LMS

Using the input past Block samples, the fitness value
of the j-th chromosome is evaluated by (5). It is also
time averaged MSE of the j-th chromosome. First we
use the GA for a global search.. By comparing the best
chromosome's fitness value, i.e., error performance,
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3
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L(\F\)\ < 7
" clk)  |where,

vk D=XT(h— N+ CLR I
eflk—N+i=dk-N+H—vlk i

IT-LMS
Fig. 5. GA-IT-LMS algorithm.

with a threshold, TH, we decide if we transfer the
current coefficient update algorithm, GA, to IT-LMS
algorithm for fine tuning.

] Blegkl . .
MSE;= g% 2 [d(k— 1) —y; (k= D]?,
7= The best chromosome @)

If current MSE is smaller than a fixed value, then we
turn the best chromosome, C(%), obtained by the GA,
which will be near the optimum solution, to IT-LMS
algorithm as it's initial coefficients for fine search, and
IT-LMS gains control of filter coefficient updating. For
convenience we will call it GA-IT-LMS.

Letting i-th coefficient distance »,(k) be vk =c;(#
— (k) where ci(k) is the i-th optimum coefficient,
MSE, E[e(£)? ] can be expressed in terms of the
coefficient distance vector V(k).

MSE=MSE,,, + VRTR Wk ®

where V(&) =[v(R), vi(A), ... v (D],
R=E[X(HX(kT] is input correlation matrix
and E[ ] denotes the ensemble averaging operation.
One of its element #«(;—0 is defined as #(i— 1)
= E[x(k~ ) x(k— D]. The input correlation matrix R is
real, symmetric and positive definite. Arrangement of
this equation in terms of u(k) gives the following
equation.

MSE(v{R))=A v k) +2B vk +F )

where A=#0), B=[:at,¢ivz(k)7’(l_i) and
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F= 3 5 olBoBri=) + MSEwm,
I=0,iFi j=o.5¥i

Equation (9) shows that MSE is a parabolic function
of each tap coefficient in one dimensional space; i.e.,
when one tap changes while all others are kept
constant, the locus of MSE becomes a parabolic
function in terms of the i-th coefficient. This locus,
which is unique for each tap coefficient at each state of
the channel, is called the characteristic function of that
tap coefficient!”.

Based on these characteristics, an iterative algorithm
for adjusting the equalizer coefficients one by one can
be developed. The algorithm uses the steepest descent
method to update the i-th tap coefficient, holding all
other coefficients constant. The process continues for
the other tap coefficients at time 4 and all the L+1 tap
coefficients are updated. As the time k increases, the
coefficient vector will be approach the Wiener optimum
C(k).

The gradient of (% with all others fixed is

presented in equation (10),
ASE 351k~ k= D), () f)
+2 3 Ptk nsth= e, (B <)

=2E[ x(k— i) ,;an(k_ nc,(k) — n;x(k— ncwl
=—2FE[x(k— Dek)] (10)

In updating the i-th tap coefticient while holding all
others fixed, the steepest descent using the measured or
estimated gradient, —2x(k— )e;(k), can be used. This is
known as an implementation of the steepest descent
using the measured or estimated gradient!"!;

new c{ky=c R +2un e;(Bx(k—1) an

where e,(k) is calculated when all other coefficients are

fixed. The parameter . is a step size (convergence
factor) that controls stability and rate of adaptation.

Using the samples taken from the TDL and some
past samples, the i-th tap coefficient can be updated
N+1 times at sample time k. Introducing index j, (11)
can become (12).

ck j+1)=c{k )+2u elk— N+ j)x(k—N+j—1)

0</<N, c{k N+1)=cfk+1) (12)

Continuing this process from tap ;=0 to tap ;= L, all
the tap coefficients are updated one by one and the
output sample y(k) is made from the TDL equalizer.
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For vector representations, a new input vector
X(k— N+ and coefficient vector C/(%,;) are defined as

X(k— N+ =[x(k—N+j,x(k—N+;—1),

o x(k=N+;-D1"  (13)

ClkD=Lco(k i), ...,clk ), .c,cllb DT (14)
where only cf%,;) changes.

Then the temporary output yf{k, and error

e{k—N+j) during c{k, /) adaptation are expressed as

vk, D= X"(k=N+j) Ck,J) (15)

e{k— N+ =dk— N+ ))~y{k,) (16)

Also IT-LMS algorithm (12) can be expressed as
the following vector form.

Clk, j+1)=Ck 1) +2u(d(k— N+ )
0

x(k—N+j—1)
0

—XTk—N+)CLE D)

0 (17)
The operation of the algorithm at time & can be

summarized as equation (12), (15) and (16). This is
depicted in Fig. 5.

V. MSE Performance of IT-LMS

The difference of excess MSE between LMS and
IT-LMS, Jexcess MSE, can be expressed in equation
(18) in terms of eigen value A; of input correlation

matrix R=E[X(kX(#T] and convergence parameter
[14]
F7EN

Aexcess MSE = excess MSE of LMS
- excess MSE of IT-LMS

A;
¢ MSE. [ 126 =, (18)

Because the sum of eigen values A; of R is equal to
the sum of diagonal elements » of R, »,, becomes
Aw » averaged value of A, . So, equation (18) can be
reduced to the following.

A ]
S 1—pr

dexcess MSE
/1? —A z/1 av
1—ud,;

7
l_ﬂAav =

MSEmin
g (19)
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Convergence condition for both algorithm, 0 < g <
1/ A ya» makes 1—puA; less than 1. Using this we can
acquire the following inequality equation (20).

A%_Ai/im/ 2
A 1=, &R A (20)

Also, szl‘fi—a,-/laﬁ g‘b(ﬂ,——aav)Z (1)

The right term of the equation (21) is always greater
than or equal to zero. This means that the equation (18)
is greater than or equal to zero, that is, excess MSE of
IT-LMS is always less than or equal to excess MSE
of LMS.

VI. Simulation Results

GA lacks in fine local tuning capabilities but it has
the advantage for global search. From our simulation
results it has the capability to reach the optimum
solution but the convergence is slow. The LMS
algorithm compensate it with the advantage for local
tuning and it has simple and efficient performance in
adaptive equalizer applications. But its convergence
speed is not acceptable for multi-path channel
equalization either. Instead of LMS algorithm, we
propose to use IT-LMS algorithm for local tuning.

Its performance has been investigated in multipath
channel equalization applications through computer
simulations and compared. For multipath channel en-
vironments we used discrete time-dispersive channels
which are shown in [13]. The channel impulse response is

H\(2)=0.26 + 0.93271 + 0.26272 (22)
Hy(2)=0.304 + 0.903z ! + 0.3042° (23)

The spectral characteristics for the channels possess
nulls as typical spectral characteristics of multipath
fading channels'"’), The number of coefficient taps, L,
for the TDL equalizer is 11 on the channel model.
AWGN variance is 0.001 and SNR=30 dB.

The population size M of GA and GA-based
algorithms is 30 in this simulation. The window size,
Block, for fitness evaluation did not make big
differences in performance and it was set to 10. From
the results of our research mutation is important in
multipath channel equalization applications unlike
described in [4]. In the case of no mutation the MSE
learning curve of the GA could not converge. In
determining the mutation rate, we have considered $

0.5—‘.

0.04
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GA- no reinsertion
—— GA- M/2 reinsertion

-0.5

log of MSE (Channel 1)
o
1

T T T T T T M T
(] 200 400 600 800 1000
number of samples

Fig. 6. Convergence characteristics of GA.

cases of mutation rate, D, such as O0(no mutation), 0.01,
0.03, 0.04 and 0.06. As increasing the mutation rate,
the minimum MSE was degraded but the convergence
speed was increased. The best choice of the mutation
rate was 0.04. Though the number of block samples for
fitness value evaluation did not give much influence to
the performance, the number of reinsertion chromosome
have affected performance of the GA. In our simulation
results depicted in Fig. 6, it has the capability to reach
the optimum solution when the number of reinserted
chromosomes is M/2 but its convergence is slow.

If the current MSE 1is smaller than a fixed value,
TH=0.01, then the best chromosome obtained by the
GA is turned into IT-LMS algorithm for fine tuning of
the equalizer coefficients,

In both simulation environments, for channel 1 and
channel 2, the number of block samples N for multiple
updating for IT-LMS algorithm is set to 0 in order to
compare performances on the fare computational con-
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LMS
: GA-DR-LMS
0.5 —— GA-IT-LMS
T 1.0
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©
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w
7}
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Fig. 7. MSE convergence comparison for H,(=z).
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Fig. 8. MSE convergence comparison for H,(z).

ditions with LMS. In this case IT-LMS algorithm can
be described as (11). The convergence parameter p for
the optimum solution of the LMS-type algorithms is set
to 0.02.

In Fig. 7 for channel H,(z), the MSE convergence

results for channel model are shown. The results show
that the log values of MSE of LMS and GA-hybrid
Data-Recycling-LMS (GA—DR-LMS)“S] have reached
—-2.6. We can see that the GA-hybrid type algorithms
have fast convergence speed and when GA-IT-LMS is
used, much lower MSE, -2.8 is acquired.

The MSE convergence results for severer channel
model H,(z), are presented in Fig. 8. The log of MSE
of LMS has not reached it's minimum MSE but
GA-DR-LMS and GA-1T-LMS show fast convergence.
Though GA-DR-LMS and GA-IT-LMS show similar
convergence speed, GA-IT-LMS gives lower MSE,
-2.4 in channel model 2.

VII. Conclusion

The proposed algorithm combines the advantage of
GA for global searches and the advantage of IT-LMS
algorithm which is rapid and having low excess MSE
for local ones. Its performance has been investigated in
multipath channe! equalization applications through
computer simulations and compared to the method that
combines GA and DR-LMS algorithm. Though this
method has as fast convergence as the proposed, it
could not improve the excess MSE performance. The
proposed GA-IT-LMS in which IT-LMS is applied to
the combined GA equalizer, could yield much lower
MSE.

The capabilities of global search, fast convergence

and lower excess MSE of the proposed algorithm make
us expect performance improvement when it is applied
to multipath channel equalization.

This work was supported by the research Grant
Council of the Samcheok University research Grant
Committee.
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