• Title/Summary/Keyword: minimum mass design

Search Result 107, Processing Time 0.022 seconds

Prediction of rock fragmentation and design of blasting pattern based on 3-D spatial distribution of rock factor

  • Sim, Hyeon-Jin;Han, Chang-Yeon;Nam, Hyeon-U
    • 지반과기술
    • /
    • v.3 no.3
    • /
    • pp.15-22
    • /
    • 2006
  • The optimum blasting pattern to excavate a quarry efficiently and economically can be determined based on the minimum production cost, which is generally estimated according to rock fragmentation. Therefore, it is a critical problem to predict fragment size distribution of blasted rocks over an entire quarry. By comparing various prediction models, it can be ascertained that the result obtained from Kuz-Ram model relatively coincides with that of field measurements. Kuz-Ram model uses the concept of rock factor to signify conditions of rock mass such as block size, rock jointing, strength and others. For the evaluation of total production cost, it is imperative to estimate 3-D spatial distribution of rock factor for the entire quarry. In this study, a sequential indicator simulation technique is adopted for estimation of spatial distribution of rock factor due to its higher reproducibility of spatial variability and distribution models than Kriging methods. Further, this can reduce the uncertainty of predictor using distribution information of sample data. The entire quarry is classified into three types of rock mass and optimum blasting pattern is proposed for each type based on 3-D spatial distribution of rock factor. In addition, plane maps of rock factor distribution for each ground level are provided to estimate production costs for each process and to make a plan for an optimum blasting pattern.

  • PDF

Analysis of Deformation Behavior of Underground Caverns in a Discontinuous Rock Mass Using the Distinct Element Method (개별요소법을 이용한 불연속 암반내 지하공동의 변형 거동 해석)

  • Jung, Wan-Kyo;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.69-81
    • /
    • 2003
  • Numerical analysis is important for the design, construction and maintenance of large caverns. The rock mass contains generally discontinuities such as faults, joints and fissures. The mechanical behavior and geometric characteristics of these discontinuities would have a significant impact on the stability of the caverns. In this research the Distinct Element Method(DEM) was used to analyze the structural stability of the large cavern. The Barton-Bandis Joint Model (B-B J.M) was used as a constitutive model for the joint. In addition, two different cases 1) analysis with a support system and 2) analysis with no support system, were analyzed to optimize a support system and to investigate reinforcing effects of a support system. The most significant parameters of in-situ stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. Displacement (horizontal, joint shear), maximum joint opening, maximum and minimum principal stresses, range of relaxed zone, rockbolt axial forces and shotcrete stresses were calculated at each excavation stage. As a result of analysis the calculated values proved to be under the allowable value Rockbolts also proved to be an efficient support measure to control joint shear displacement which had significant effects on extending the relaxed zone. As a consequence, the structural stability of the cavern was assured with an appropriate support system.

  • PDF

Dynamic response of adjacent structures connected by friction damper

  • Patel, C.C.;Jangid, R.S.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.149-169
    • /
    • 2011
  • Dynamic response of two adjacent single degree-of-freedom (SDOF) structures connected with friction damper under base excitation is investigated. The base excitation is modeled as a stationary white-noise random process. As the force-deformation behavior of friction damper is non linear, the dynamic response of connected structures is obtained using the equivalent linearization technique. It is observed that there exists an optimum value of the limiting frictional force of the damper for which the mean square displacement and the mean square absolute acceleration responses of the connected structures attains the minimum value. The close form expressions for the optimum value of damper frictional force and corresponding mean square responses of the coupled undamped structures are derived. These expressions can be used for initial optimal design of the friction damper for connected structures. A parametric study is also carried out to investigate the influence of system parameters such as frequency ratio and mass ratio on the response of the coupled structures. It has been observed that the frequency ratio has significant effect on the performance of the friction damper, whereas the effects of mass ratio are marginal. Finally, the verification of the derived close from expressions is made by correlating the response of connected structures under real earthquake excitations.

Performance analysis of S-CO2 recompression Brayton cycle based on turbomachinery detailed design

  • Zhang, Yuandong;Peng, Minjun;Xia, Genglei;Wang, Ge;Zhou, Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2107-2118
    • /
    • 2020
  • The nuclear reactor coupled with supercritical carbon dioxide (S-CO2) Brayton cycle has good prospects in generation IV reactors. Turbomachineries (turbine and compressor) are important work equipment in circulatory system, whose performances are critical to the efficiency of the energy conversion system. However, the sharp variations of S-CO2 thermophysical properties make turbomachinery performances more complex than that of traditional working fluids. Meanwhile, almost no systematic analysis has considered the effects of turbomachinery efficiency under different conditions. In this paper, an in-house code was developed to realize the geometric design and performance prediction of S-CO2 turbomachinery, and was coupled with systematic code for Brayton cycle characteristics analysis. The models and methodology adopted in calculation code were validated by experimental data. The effects of recompressed fraction, pressure and temperature on S-CO2 recompression Brayton cycle were studied based on detailed design of turbomachinery. The results demonstrate that the recompressed fraction affects the turbomachinery characteristic by changing the mass flow and effects the system performance eventually. By contrast, the turbomachinery efficiency is insensitive to variation in pressure and temperature due to almost constant mass flow. In addition, the S-CO2 thermophysical properties and the position of minimum temperature difference are significant influential factors of cyclic performance.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.

Development of an Ejector System for Operation of Chemical Lasers (II) - Optimal Design of the Second-Throat Type Annular Supersonic Ejector - (화학레이저 구동용 이젝터 시스템 개발 (II) - 이차목 형태의 환형 초음속 이젝터 최적 설계 -)

  • Kim Sehoon;Jin Jungkun;Kwon Sejin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1231-1237
    • /
    • 2004
  • Determination of geometric design parameters of a second-throat type annual supersonic ejector is described. Tested geometric parameters were primary nozzle area ratio, cross-sectional area of second-throat, L/D ratio of second-throat and primary flow injection angle. Varying these four geometric parameters, we build a test matrix made of 81 test conditions, and experimental apparatus was fabricated to accommodate them. For each test condition, the stagnation pressure of primary flow and the static pressure of the secondary flow were measured simultaneously along with their transition to steady operation and finally to unstarting condition. Comparing the performance curve of every case focused on starting pressure, the unstarting pressure and the minimum secondary pressure, we could derive correlations that the parameters have on the performance of the ejector and presented the optimal design method of the ejector. Additional experiments were carried out to find effects of temperature and mass flow rate of the secondary flow.

A Study on the Design of Touch Free Eddy-Current Brake (비접촉 와전류 제동기의 설계에 관한 연구)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Tak;Gang, Do-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.2
    • /
    • pp.77-83
    • /
    • 2000
  • This paper deals with the design of a touch free eddy-current brake for high speed transportation systems by using 2-dimensional Finite Element Method (2-D FEM). The eddy current brake systems have to equipped with maximum braking force and deceleration at the given volume or mass, high braking force at small rate, attraction forces as small as possible and stable construction. The parameters, such as the number of pole, electric ampere-turns and slot width have influence on these braking characteristics. For the magnet to satisfy above-mentioned performance in high speed, the braking performance according to variation of the parameters are analyzed by the 2-D FEM. In addition, the magnet stack width is determined from equivalent stack width that is calculated by solution of the Field with scalar potential. From these results, the magnet of optimized configuration with maximum braking force and minimum attraction force is designed by the process of detail design.

  • PDF

Design, Fabrication, Static Test and Uncertainty Analysis of a Resonant Microaccelerometer Using Laterally-driven Electrostatic Microactuator (수평구동형 정전 액추에이터를 이용한 금속형 공진가속도계의 설계, 제작, 정적시험 및 오차분석)

  • Seo, Yeong-Ho;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.520-528
    • /
    • 2001
  • This paper investigates a resonant microaccelerometer that measures acceleration using a built-in micromechanical resonator, whose resonant frequency is changed by the acceleration-induced axial force. A set of design equations for the resonant microaccelerometer has been developed, including analytic formulae for resonant frequency, sensitivity, nonlinearity and maximum stress. On this basis, the sizes of the accelerometer are designed for the sensitivity of 10$^3$Hz/g in the detection range of 5g, while satisfying the conditions for the maximum nonlinearity of 5%, the minimum shock endurance of 100g and the size constraints placed by microfabrication process. A set of the resonant accelerometers has been fabricated by the combined use of bulk-micromachining and surface-micromachining techniques. From a static test of the cantilever beam resonant accelerometer, a frequency shift of 860Hz has been measured for the proof-mass deflection of 4.3${\pm}$0.5$\mu\textrm{m}$; thereby resulting in the detection sensitivity of 1.10${\times}$10$^3$Hz/g. Uncertainty analysis of the resonant frequency output has been performed to identify important issues involved in the design, fabrication and testing of the resonant accelerometer.

다목적실용위성 1호 태양지향모드에서의 연료 절감을 위한 퍼지제어기 설계

  • Choi, Hong-Taek;Han, Jung-Youp
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.97-105
    • /
    • 2002
  • The mission life of a satellite determines the amount of fuel required on-board, while the total mass requirement limits the fuel to be loaded. Hence, for the design of thruster control loop, not only the satellite pointing accuracy but the saving of fuel is to be considered. In this paper, a two-step fuzzy controller is proposed for the thruster control loop to save fuel consumption. This approach combines requirements for pointing control accuracy with minimum fuel consumption into a fuzzy controller design. To demonstrate this approach, we have designed a fuzzy controller for the Sun Pointing Mode of KOMPSAT-1. The performance of this fuzzy controller design is compared with that of PD controller used for KOMPSAT-1.

  • PDF

Numerical investigation and optimization of the solar chimney performances for natural ventilation using RSM

  • Mohamed Walid Azizi;Moumtez Bensouici;Fatima Zohra Bensouici
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.521-533
    • /
    • 2023
  • In the present study, the finite volume method is applied for the thermal performance prediction of the natural ventilation system using vertical solar chimney whereas, design parameters are optimized through the response surface methodology (RSM). The computational simulations are performed for various parameters of the solar chimney such as absorber temperature (40≤Tabs≤70℃), inlet temperature (20≤T0≤30℃), inlet height of (0.1≤h≤0.2 m) and chimney width (0.1≤d≤0.2 m). Analysis of variance (ANOVA) was carried out to identify the design parameters that influence the average Nusselt number (Nu) and mass flow rate (ṁ). Then, quadratic polynomial regression models were developed to predict of all the response parameters. Consequently, numerical and graphical optimizations were performed to achieve multi-objective optimization for the desired criteria. According to the desirability function approach, it can be seen that the optimum objective functions are Nu=25.67 and ṁ=24.68 kg/h·m, corresponding to design parameters h=0.18 m, d=0.2 m, Tabs=46.81℃ and T0=20℃. The optimal ventilation flow rate is enhanced by about 96.65% compared to the minimum ventilation rate, while solar energy consumption is reduced by 49.54% compared to the maximum ventilation rate.