Recently, the interest in the development of high efficiency Diesel engine technology using alternative fuel has been on the rise and related studies are being performed. Therefore, the DME(Dimethyl Ether), an oxygen containing fuel as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But it is unavoidable that the modification of a fuel supply system in an engine to application of the DME fuel because of DME fuel properties. So, in this study, a DME high pressure pump for a common-rail fuel supply system has been composed and the test results of the pump have been presented. As the results of the tests, it is confirmed that DME pump inlet pressure, pump speed and common-rail pressure effects on the volumetric efficiencies of the pump. Finally, it is defined that the optimum plunger volume of a DME pump has to be extended to the minimum 150% compared to a Diesel pump plunger volume considering DME fuel properties and volumetric efficiencies characteristics at same specifications of the high pressure pump.
최근의 분진폭발은 플라스틱, 의약품, 목재, 곡물 저장고, 고체연료, 화학제품 제조공정 등을 포함하여 성형 및 가공 공정 등에서 화재폭발사고가 발생되고 있다. 폐목재를 재활용하여 PB(Particle board)를 생산하는 국내 제조사업장에서는 화재폭발 사고가 빈번히 발생하고 있어 예방대책이 요구되고 있다. 본 연구에서는 폐목재 제조공정의 사고예방과 목재분진 취급공정에 대한 안전대책 등을 제시하기 위하여 사고원인 물질인 폐목재 부유분진의 폭발특성실험을 실시하고 실험결과를 검토하였다. 또한 폐목재 분진의 화재폭발위험성을 상세히 평가하기 위하여 해당 물질의 자연발화점, 축열저장시험, 및 최소점화에너지 등의 화재폭발위험특성값을 실험적으로 조사하였다. 본 연구에서 사용한 폐목재 시료의 비구형 입자형태를 가지는데 입도분석기의 측정 결과 평균 입경은 $15.96{\mu}m$로 조사되었다. 또한 목재 분진의 함수율은 3.88%이며 중금속함유량은 1.73%이다. 자연발화점 측정결과 $225.5^{\circ}C$로서 비교적 낮게 측정되었고 퇴적분진에 대한 화재의 위험성은 높게 나타났다. 반면에 축열저장시험 결과를 통하여 공정관리 온도 및 보관온도를 $150^{\circ}C$ 이하로 관리하면 축열에 의한 자기분해 위험성은 낮은 것으로 판단되었다. 그러므로 축열에 의한 화재폭발 등의 위험성은 낮은 것으로 사료 된다. 최대폭발압력($P_{max}$)은 8.7 bar이며 폭발하한농도 (LEL)는 $60g/m^3$으로 나타났다. 부유분진의 폭발특성실험 결과 분진폭발지수(Kst)는 폭발등급 St 1 (0$bar{\cdot}m/s$)으로 나타났으며 폭발에 의한 위험성이 약한 분진으로 판정되었다. 최소점화에너지(MIE)는 10mJ < MIE <30mJ의 범위로 측정되었으며, 계산에 의해 추정된 최소점화 에너지(Es) 값은 14 mJ로서 일반적인 발화감도(Normal ignition sensitive)로 분류되었다. 이는 실질적인 점화원만 제거하여도 분진폭발을 예방할 수 있다는 것을 의미한다. 그러나 분진 폭발사고를 예방을 위하여 MIE값이 공정운전온도 $100^{\circ}C$ 초과 시에 급격히 낮아질 수 있으므로 운전 온도 설정에 있어서 주의가 필요하다.
레조르시놀은 목재 및 타이어용 접착제, 합성수지 염료의 원료 등으로 널리 사용되고 있다. 이 물질은 상온에서 흰색 결정으로 분진은 공기 중에서 폭발성 혼합물을 형성할 수 있고 밀폐 공간에서 열에 노출 되었을 경우 폭발 위험성이 있다고 알려져 있다. 본 연구에서는 레조르시놀 취급시 화재 및 폭발 사고 등의 예방을 위한 해당 물질의 열분석, 열안정성, 분진폭발특성 및 최소점화에너지 등의 화재 폭발위험 특성을 평가하였다. 이들 연구결과는 레조르시놀의 사용 및 취급 시 공정의 안전 정보로 활용될 수 있을 것이다.
저밀도 폴리에틸렌(Low-density polyethylene, LDPE)은 분진폭발 관련 특성치에 대한 기준이 제시되고 있지 않아 제조 및 취급설비의 안전한 설계가 어렵다. 이 연구에서는 LDPE 제조공정 중 Bag Filter에서 채취한 분진(LDPE 1)과 Silo 등의 설비 외부에 누설된 퇴적 분진(LDPE 2)에서 채취한 2개 시료에 대하여 분진폭발 시험을 수행하였고 그 중 LDPE 2 분진에 대하여 요약하였다. 입도분석 결과, 체적기준 평균입경은 95.04 ㎛, 수밀도는 0~1 ㎛로 나타났다. 최대폭발압력(Pmax)은 6.6 bar, 최대폭발압력상승속도는 1500 g/m3에서 366 [bar/s]로 분진폭발지수(Kst)는 99.4 bar·m/s로 ST-1 등급임을 확인하였다. 또한, 최소점화에너지는 10 mJ이며 최소점화온도는 450 ℃로 나타났다. 현재, 제조 및 취급 설계는 고밀도 폴리에틸렌(HDPE)의 특성값을 기초로 한다. 그러나, 시험 결과 LDPE 2 분진이 HDPE(입자지름 61.6 ㎛)보다 위험성이 높은 것으로 나타나 LDPE 제조공정에서 HDPE 설계기준을 적용할 때는 주의가 필요하다.
Recent research has focused on alternative fuel to improve engine performance and to comply with emission regulation. Finding an alternative fuel and reducing environment pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched CNG fuel in SI engine and is to clarify the effects of hydrogen enrichment in CNG fuelled engine on exhaust emission and performance. An experimental study was carried out to obtain fundamental data for performance and emission characteristics of hydrogen enrichment in SI engine. The experiment was conducted at 2500 rpm, bmep 2 bar, 4 bar conditions while CNG fuel was mixed with 10, 20 and 30% hydrogen blends. From the experimental results, combustion duration was shortened due to rapid flame propagation velocity of hydrogen and these were attributed to the burning velocity increasing exponentially with increasing hydrogen blending ratio. Hydrogen has much wider flammable limit than methane, gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustion. By adding hydrogen, $CO_2$ and HC were reduced. However, $NO_X$ was increased dut to high rate of heat release for hydrogen substitutions.
자동차 배기가스 규제가 강화됨에 따라 천연가스에 수소를 첨가하는 수소-천연가스 혼합연료(HCNG)를 기존의 압축천연가스(CNG) 엔진에 적용하려는 많은 연구들이 진행되고 있다. 그러나 수소의 높은 연소 속도로 인한 역화, 조기착화, 노킹(knocking) 등의 이상연소 발생 가능성은 엔진의 가열 또는 열효율 및 출력의 저하를 야기하는 문제점이 발생할 수 있다. 본 연구에서는 CNG 연료에 수소를 일정 부분 혼합한 HCNG 연료를 기존의 CNG 엔진에 적용하여 희박연소 한계 확장을 통해 연소 성능 개선을 확인하고, CNG와 HCNG 연료의 노킹 특성을 파악하고자 하였다. 공기과잉율의 변화에 따른 노킹 발생 조건을 관찰함으로써 HCNG 연료의 적용성 및 노킹마진을 평가하고자 하였다. HCNG 연료 사용 시 최적운전조건에서 노킹 문제없이 엔진을 운전할 수 있었으나 노킹이 일어날 수 있는 가능성이 높아져 이에 대한 대비가 필요할 것으로 판단된다.
폭발성 가스가 존재하는 위험장소에서 사용하는 전기기기는 폭발성 가스의 점화원이 되지 않도록 설계되어야 한다. 내압방폭 구조의 설계는 전기 스파크를 발생시키는 부품을 가진 용기가 내부에서 가스나 증기의 폭발시 최대 압력에 견디고 내부 화염이 외부 가스나 증기 폭발로 전파되지 않도록 설계되어야 한다. 이 논문은 화염 틈새를 통해 외부로 분사되는 연소 생성물의 분사가 외부 가스나 증기를 점화시킬 정도의 온도나 에너지를 가질 수 없도록 하는 MESG(Maximum Experimental Safe Gap)의 중요한 물리적인 메커니즘에 대해 설명하였다. IEC 60079-20-1:2010 기준에 의해 프로판과 아세틸렌의 MESG를 실험하여 MESG 값을 측정하고 가스폭발시의 최대 폭발압력을 측정하였다. 결과로는 최소 MESG가 측정될 때 가스의 농도는 화학당량 농도보다 높고 폭발압력은 최소 MESG에서 가장 높게 나타났다.
분진폭발은 플라스틱류, 제약, 목재, 곡물 저장고, 고체연료 및 화학약품의 제조와 같은 다양한 산업에서 발생되고 있다. 본 연구에서는 폐목재를 재활용하여 Particle board를 생산하는 공정의 사이로 분진, 함머밀 분진 및 뉴송 분진을 선택하여 분진폭발 특성을 평가하였다. 실험은 20 L 구형 폭발용기를 이용하여 목재 부유분진의 최대폭발압력, 분진폭발지수, 폭발한하계, 및 최소 점화에너지를 측정하고, 평가하였다. 이들 연구결과는 Particle board를 생산하는 제조공정의 화재 폭발사고 예방을 위한 공정안전 정보로 활용할 수 있을 것이다.
제약회사에서 제조하는 의약품의 원재료에 인화성물질이 종종 존재한다. 이런 경우 과량의 인화성 물질을 투입하여 중간체를 만들고 반응에 참여하지 않은 인화성물질을 여과 및 건조단계를 통하여 제거하는 공정을 거치게 된다. 또한, 여과 공정에서 분리된 인화성 액체가 여액받이 통에 스플래쉬 필링 형태로 쌓이게 된다. 이런 경우 인화성 액체의 증기 및 미스트가 생성되어 폭발 하한 값, 최소점화에너지가 더욱 낮아지게 되며 복합 대전이 발생하여 화재·폭발의 위험이 증대된다. 본 연구에서는 최근의 제약회사 여과공정 중 발생한 화재 사고를 분석하여, 화재 폭발 사고를 방지하기 위한 방안으로 질소 공급설비 설치, 용량 개선, 도전성 여과포 및 정전기 축적 방지대책 등을 제시하고자 한다.
반도체 제조공정 중 Diffusion 공정에서는 미세 분말 등 여러 반응성 부산물이 발생한다. 부산물은 후처리 및 배기처리 시스템에 설치된 배관 안에 퇴적되고, 잠재적으로 상당한 분진폭발 위험이 있을 수 있다. 본 연구에서는 Diffusion 공정에서 발생하는 물질 검증, 분석시료 선정, 위험성 분석 3가지 방법으로 진행하였다. Diffusion 공정에서 취급 중인 물질 중 부산물 분진이 발생할 수 있는 원료는 ZrO2, TEOS, E-DEOS로 확인되었다. 각 처리시설에서 채취한 부산물을 대상으로 최소착화에너지, 분진폭발 테스트를 수행하였다. 그 결과 최소착화에너지의 경우 모든 부산물이 점화되지 않았다. 하지만, 분진폭발 테스트 결과 ZrO2이 부산물 분진에서 최대 7.6 bar, Kst는 73.3 bar·m/s로 폭발 위험성이 확인되었다. 이를 통해 반도체 공정에서 이러한 위험성을 저감 시키기 위해 배관 내부의 퇴적층이 과도하게 쌓이지 않도록 관리해야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.