• Title/Summary/Keyword: minimum energy control

Search Result 275, Processing Time 0.029 seconds

Laboratory evaluation of roller compacted concrete containing RAP

  • Ahmadi, Amin;Gogheri, Mohammad K.;Adresi, Mostafa;Amoosoltani, Ershad
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.489-498
    • /
    • 2020
  • This paper investigates mechanical properties of roller compacted concrete (RCC) involving reclaimed asphalt pavement (RAP). In this way, a set of 276 cylindrical RCC specimens were prepared with different RAP sizes (i.e., fine, coarse & total) at various ratios (i.e., 10%, 20%, and 40%). Results reveal that incorporation of RAP decreases unconfined compressive strength (UCS), modulus of elasticity (E), and indirect tensile (IDT) strength of RCC. For each RAP size, a regression model was used to maximize RAP content while satisfying the UCS lower limit (27.6 Mpa) mentioned by ACI as a minimum requirement for RCC used in pavement construction. Moreover, UCS of RAP incorporated mixes, dissimilar to that of control mixes, was found to be sensitive and insensitive to the testing temperature and curing time after 7 days, respectively. The results also demonstrate that the higher amounts of RAP, the more flexibility in RCC is. This issue was also proved by the results of modulus of elasticity test. In addition, the toughness index (TI) shows that increase in RAP content leads to up to 43% increase in energy absorbance capacity of RCC.

Gamma irradiation and subsequent storage reduce patulin content in apple juice

  • Hyejeong Yun;Dong-Ho Kim;Jung-Ok Kim;Gee-Dong Lee;Joong-Ho Kwon
    • Food Science and Preservation
    • /
    • v.31 no.3
    • /
    • pp.499-505
    • /
    • 2024
  • Patulin has been reported as a risk factor in various foods, especially apple juice. This study monitored residual patulin and polyphenolic content in apple juice during post-irradiation storage conditions. Response surface methodology (RSM) was applied to monitor the changes in dependent variables (Yn, patulin, and polyphenolics) as affected by independent variables, such as storage temperature (Xi, -20℃ to 20℃), irradiation dose (Xii, 0-2 kGy), and storage period (Xiii, 0-20 days), which were based on a central composite design. The predicted peak point resulted in the lowest residual patulin content of 58.42 ppb with the corresponding independent parameter conditions, such as 18.19℃ of storage temperature, 1.24 kGy of irradiation dose, and 13.42 days of storage period. The residual patulin content of 58.42 ppb is the minimum desirable level, representing a 91% reduction compared to the non-irradiated control (675.00 ppb). A maximum polyphenolics content (11.98 mg/g) was obtained under the predicted maximum conditions of 14.40℃, 0.78 kGy, and 3.4 days. The most influential parameter in reducing residual patulin content while maintaining polyphenolic content in apple juice was irradiation dose (p<0.01), which showed potential to be applied in controlling the patulin levels in apple juice.

Effect of Pt/Al2O3-based Catalysts on Removal Efficiency of Hydrogen (Pt/Al2O3계 촉매의 특성이 수소제어 활성에 미치는 영향 연구)

  • Won, Jong Min;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.221-229
    • /
    • 2017
  • In this study, a wet impregnation method was applied to catalysts based on the active metal Pt in order to confirm the oxidation characteristics of various commercial alumina supports at room temperature. The catalysts were characterized using XPS, CO-chemisorption, and BET. Various $Pt/Al_2O_3$ catalysts controlled the oxygen species of Pt by the electronegativity of electrons and charges when the catalyst was prepared according to the heat treatment conditions. The reason that the dispersion degree decreases with increasing Pt loading seems to be attributed to HT (Huttig Temperature) of Pt. In addition, the minimum hydrogen concentration that can be controlled at room temperature can control hydrogen from metallic Pt up to 1.0 vol% at over 70.09% in the catalyst.

Characteristics of wave propagation in a sloping-wall-type wave absorber

  • Zhu, Lixin;Lim, Hee Chang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.843-848
    • /
    • 2015
  • The objective of this study is to observe and optimize a typical ocean environment and reduce wave reflections in the wave flume. In order to generate ocean waves in the wave flume, a combination of a horizontal piston type wave generator and wave absorbers was installed in the channel. Two probes for measuring the wave heights, i.e., wave level gauges, were used to record the continuous variation of the wave surface, the phase difference, and the maximum (crest) and minimum (trough) points of the propagating waves. In order to optimize the shape and size of the propagating waves, several absorption methods were proposed. Apart from an active wave absorption method, we used methods that involved vertical porous plates, horizontal punching plates, and sloping-wall-type wave absorbers. To obtain the best propagating waves, a sloping-wall-type wave absorber was chosen and tested in terms of the constitutive filling materials and the location and shape of the plate. This study also focused on the theoretical prediction of the wave surface, separating them into the incident and reflective components. From the results, it is evident that the wave absorber comprising a hard filling material exhibits a better performance than the absorber comprising a soft material, i.e., the wave absorber can be a strong sink to control the energy of the incoming wave. In addition, larger wave absorbers correspond to lower reflectance because a larger volume can reduce the incoming wave energy. Therefore, at constant absorber conditions, the reflectance of the wave increases as the wave period increases. Finally, the reflectance of the wave was controlled to be less than 0.1 in this study so that the wave flume can be used to simulate an offshore environment.

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

Optimization of target, moderator, and collimator in the accelerator-based boron neutron capture therapy system: A Monte Carlo study

  • Cheon, Bo-Wi;Yoo, Dohyeon;Park, Hyojun;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Hong, Bong Hwan;Chung, Heejun;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1970-1978
    • /
    • 2021
  • The aim of this study was to optimize the target, moderator, and collimator (TMC) in a neutron beam generator for the accelerator-based BNCT (A-BNCT) system. The optimization employed the Monte Carlo Neutron and Photon (MCNP) simulation. The optimal geometry for the target was decided as the one with the highest neutron flux among nominates, which were called as angled, rib, and tube in this study. The moderator was optimized in terms of consisting material to produce appropriate neutron energy distribution for the treatment. The optimization of the collimator, which wrapped around the target, was carried out by deciding the material to effectively prevent the leakage radiations. As results, characteristic of the neutron beam from the optimized TMC was compared to the recommendation by the International Atomic Energy Agent (IAEA). The tube type target showed the highest neutron flux among nominates. The optimal material for the moderator and collimator were combination of Fluental (Al203+AlF3) with 60Ni filter and lead, respectively. The optimized TMC satisfied the IAEA recommendations such as the minimum production rate of epithermal neutrons from thermal neutrons: that was 2.5 times higher. The results can be used as source terms for shielding designs of treatment rooms.

Experimental Test Results of Nine Scheduling Operational Modes of PV and Battery Hybrid System for the Development of Automatic Control Algorithm for Continual Operation without being shut-downed (태양광 배터리 Hybrid 전력공급시스템 9가지 운전 모드 시험결과 및 무고장 연속 운전을 위한 자동제어 알고리즘 개발)

  • Song, Taek Ho;Yang, Seung Kwon;Kim, Minjeong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 200 buildings that KEPCO headquarter and branch offices use. And K-BEMS system is composed of PV, battery, and hybrid PCS. KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. In this paper, the results of the project are shown. 9 modes of test results of K-BEMS system and are operational problems were analyzed. And measures to cure the trouble are also suggested. Batteries are operated more than 20% of SOC, and less than 20% of SOC battery protection switches are automatically shutting down the system and the system no longer respond to EMS, ending the supply of PV, and so therefore to continue the PV power supply it was turn out to be necessary that the EMS should automatically change its policy to change PV only supply mode automatically when the Battery Switch automatically operated. To operate the system continuously and automatically, it is necessary to modify the minimum operational SOC value, and in addition to that the EMS computer must remember the last shut-down SOC and Voltage which interrupted the system and add some margin to reflect the measurement error in the system.

A Study on the Development of Electrolysis System with Vertically Circulating Mercury Capillary Bundle Electrode and its Characteristics (수직형 순환식 수은 모세관 다발체 전극 전해계의 개발과 그 특성 연구)

  • Kim, Kwang-Wook;Lee, Eil-Hee;Shin, Young-Joon;Yoo, Jae-Hyung;Park, Hyun-Soo
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.228-236
    • /
    • 1996
  • An electrolysis system with a vertically circulating mercury capillary bundle electrode was developed with a very large electrode area in a minimum space. This system was operated by forcedly feeding mercury and aqueous solution containing metal ion into a fiber bundle packed densely within a small porous glass tube. In order to test the characteristics and stability of the electrolysis system, the reduction voltammograms of uranyl and ferric ions were measured with changes of the mercury flow rate and the aqueous flow rate. The aqueous flow rate had a large effect on the electrochemical reaction of metal ion occurring at the interface between the mercury and the aqueous solution and had to be regulated as an appropriate value to have a good limiting current shape. The limiting current was linearly proportional to the aqueous flow rate, and complete reductions of uranyl and ferric ions were rapidly and continuously accomplished at the potential showing limiting current. With a mercury flow rate high enough to keep a capillary continuum of mercury in the fiber bundle, the mercury flow rate had almost no effect on the electrochemical reaction. This system was confirmed to be effective and stable enough to control rapidly and continuously the oxidation state of metal ions fed into the system under an appropriate aqueous flow rate.

  • PDF

Development of Enhanced DAP(Dose Area Product) (성능이 향상된 면적선량계(DAP) 개발)

  • Lee, Young-Ji;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.739-742
    • /
    • 2019
  • In this paper, we propose enhanced DAP(Dose Area Product). The development of enhanced DAP proposed in this paper has optimized the area dose meter that was developed previously. The development of enhanced DAP performed Optimized design of charge integrator and ADC circuit, optimization of line transceiver for RS-485 communication, optimization of display circuit, and optimization of PC-based control program for interlocking and aging. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, Radiation dose dependence and Radiation quality dependence were measured to be 4.2%, which is below ${\pm}15%$ of international standard. Energy range/Tube voltage was confirmed in the range of 30~150kV. The sensitivity difference between sensor field and sensor field area dose sensitivity was measured to be 4.3%, and it was confirmed that it operates normally under ${\pm}15%$ of international standard. In order to measure the reproducibility of the area dosimeter, it was confirmed that it was 0% and it was operated normally at less than 2% of IEC60580 recommendation. Digital resolution was confirmed to be a minimum unit of $0.01{\mu}Gy{\cdot}m^2$ within the error range for the reference dose per hour.

Performance analysis of S-CO2 recompression Brayton cycle based on turbomachinery detailed design

  • Zhang, Yuandong;Peng, Minjun;Xia, Genglei;Wang, Ge;Zhou, Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2107-2118
    • /
    • 2020
  • The nuclear reactor coupled with supercritical carbon dioxide (S-CO2) Brayton cycle has good prospects in generation IV reactors. Turbomachineries (turbine and compressor) are important work equipment in circulatory system, whose performances are critical to the efficiency of the energy conversion system. However, the sharp variations of S-CO2 thermophysical properties make turbomachinery performances more complex than that of traditional working fluids. Meanwhile, almost no systematic analysis has considered the effects of turbomachinery efficiency under different conditions. In this paper, an in-house code was developed to realize the geometric design and performance prediction of S-CO2 turbomachinery, and was coupled with systematic code for Brayton cycle characteristics analysis. The models and methodology adopted in calculation code were validated by experimental data. The effects of recompressed fraction, pressure and temperature on S-CO2 recompression Brayton cycle were studied based on detailed design of turbomachinery. The results demonstrate that the recompressed fraction affects the turbomachinery characteristic by changing the mass flow and effects the system performance eventually. By contrast, the turbomachinery efficiency is insensitive to variation in pressure and temperature due to almost constant mass flow. In addition, the S-CO2 thermophysical properties and the position of minimum temperature difference are significant influential factors of cyclic performance.