• Title/Summary/Keyword: minimization model

Search Result 565, Processing Time 0.035 seconds

A robust nonlinear mathematical programming model for design of laterally loaded orthotropic steel plates

  • Maaly, H.;Mahmoud, F.F.;Ishac, I.I.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.223-236
    • /
    • 2002
  • The main objective of the present paper is to address a formal procedure for orthotropic steel plates design. The theme of the proposed approach is to recast the design procedure into a mathematical programming model. The objective function to be optimized is the total weight of the structure. The total weight is function of its layout parameters and structural element design variables. Mean while the proposed approach takes into consideration the strength and rigidity criteria in addition to other dimensional constraints. A nonlinear programming model is developed which consists of a nonlinear objective function and a set of implicit/explicit nonlinear constraints. A transformation method is adopted for minimization strategy, where the primal model constrained problem is transformed into a sequence of unconstrained minimization models. The search strategy is based on the well-known Fletcher/Powell algorithm. The finite element technique is adopted for discretization and analysis strategies. Mindlin theory is selected to simulate the finite element model and a selective reduced integration scheme is exploited to avoid a shear lock problem.

Permanent Magnet Shape Optimization of Moving Magnet type PMLSM for Thrust Ripple Minimization (가동 영구자석형 PMLSM 추력리플 최소화를 위한 영구자석 형상 최적화)

  • Yoon Kang-Jun;Lee Dong-Yeup;Kim Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.53-59
    • /
    • 2005
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. In order to reduce remodeling time as changing design parameter for Permanent Magnet shape optimization, the moving model node technique was applied. The characteristics of thrust and detent force computed by finite element analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape. In addition to, thrust per unit volume is improved 4.l2[%] in optimum model.

On-line Efficiency Optimization of IPMSM drive using Fuzzy Control and Loss Minimization Method (퍼지제어와 손실최소화 기법을 이용한 IPMSM 드라이브의 실시간 효율최적화 제어)

  • Kang, Seong-Jun;Ko, Jae-Sub;Jang, Mi-Geum;Kim, Soon-Young;Mun, Ju-Hui;Lee, Jin-Kook;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1356-1357
    • /
    • 2011
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes on-line efficiency optimization of IPMSM drive using fuzzy logic control(FLC) and the loss minimization method. In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to IPMSM drive system and the operating characteristics controlled by the loss minimization method and FLC control are examined in detail.

  • PDF

A Study on the Change of the Korean Liquor Industry and the Imposition of Liquor Tax by Changes in Tax system (주세 체계 개편으로 인한 주류 산업의 변화와 주세 부과 방안에 관한 연구)

  • Lim, Geon-Woo;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.3
    • /
    • pp.285-300
    • /
    • 2021
  • On January 1, 2020, the liquor tax for beer and takju was reorganized from the ad valorem tax to the specific tax. The purpose of the reorganization of the liquor tax announced by the National Tax Service is to improve the quality of the liquor and to resolve unreasonable discrimination between domestic and imported liquor. However, it is necessary to determine whether the National Tax Service's standard for levying the liquor tax is appropriate for the purpose. In this study, the change in the liquor industry is estimated due to the reorganization of the liquor tax using Hicks net price elasticity. In addition, the specific tax for each of the liquors and the alcohol content derived from the social cost minimization model is compared. The main findings are as follows. First, when the liquor tax of beer and takju is converted to the specific tax, social costs increase, and social welfare decrease. Second, if all the liquors are converted to the specific tax, social costs decrease. Third, when comparing specific tax by each of the liquors and the alcohol content according to the social cost minimization model, The specific tax by alcohol content can be considered more appropriate in terms of social cost and the stakeholders in the liquor industry.

Nonlinear section model for analysis of RC circular tower structures weakened by openings

  • Lechman, Marek;Stachurski, Andrzej
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.161-172
    • /
    • 2005
  • This paper presents the section model for analysis of RC circular tower structures based on nonlinear material laws. The governing equations for normal strains due to the bending moment and the normal force are derived in the case when openings are located symmetrically in respect to the bending direction. In this approach the additional reinforcement at openings is also taken into account. The mathematical model is expressed in the form of a set of nonlinear equations which are solved by means of the minimization of the sums of the second powers of the residuals. For minimization the BFGS quasi-Newton and/or Hooke-Jeeves local minimizers suitably modified are applied to take into account the box constraints on variables. The model is verified on the set of data encountered in engineering practice. The numerical examples illustrate the effects of the loading eccentricity and size of the opening on the strains and stresses in concrete and steel in the cross-sections under consideration. Calculated results indicate that the additional reinforcement at the openings increases the resistance capacity of the section by several percent.

The Minimization of Tolerance Cost and Quality Loss Cost by the Statistical Tolerance Allocation Method (Statistical Tolerance Allocation을 이용한 제조비용과 품질손실비용의 최소화)

  • Kim, Sunn-Ho;Kwon, Yong-Sung;Lee, Byong-Ki;Kang, Kyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.175-183
    • /
    • 1998
  • When a product is designed, tolerances must be given to the product so that required functions are guaranteed and production costs are minimized. In this research, a model is suggested which allocates tolerances to components optimally according to the STA(Statistical Tolerance Allocation) method. Taking into account the concept that dimensional errors have characteristics of statistical distributions, this model presents the discrete pseudo-boolean approach for the tolerance optimization by minimizing the tolerance cost and the quality loss cost. In this approach, two methods are proposed for the reduction of the problem scale; 1) a method for converting the minimization model for casts into the maximization model for cost savings, and 2) procedures to reduce the number of constraints and variables.

  • PDF

Planning of Accelerated Degradation Tests: In the Case Where the Performance Degradation Characteristic Follows the Lognormal Distribution (성능특성치의 열화가 대수정규분포를 따를 때의 가속열화시험 모형 개발)

  • Lim, Heonsang;Sung, Si-Il
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 2018
  • Purpose: This article provides a mathematical model for the accelerated degradation test when the performance degradation characteristic follows the lognormal distribution. Method: For developing test plans, the total number of test units and the test time are determined based on the minimization of the asymptotic variance of the q-th quantile of the lifetime distribution at the use condition. Results: The mathematical model for the accelerated degradation test is provided. Conclusion: Accelerated degradation test method is widely used to evaluate the product lifetime within a resonable amount of cost and time. In this article. a mathematical model for the accelerated degradation test method is newly developed for this purposes.

A Study on the Detent force Minimization Using Notch in Slotted Pemanent Magnet Linear Synchronous Motor (PMLSM의 디텐트력 최소화를 위한 Notch의 적용에 관한 연구)

  • Lee, Donf-Yeue;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.477-482
    • /
    • 2005
  • In this paper, detent force is minimized using notch and slot-aputure width adjustment in a slotted PMLSM. This time, the moving model node technique has used to reduce the time and the effort for calculation according to changing design parameters. As the result, the detent force of proposed model is decreased from 9.44[N] to 0.97[N] compare with it of basic model greatly. The thrust Is decreased 1.3[$\%$] from 342.07[N] to 337.48[N] a little. The notch is applied to PMLSM simply, the detent force is reduced greatly.

Weight Minimization of a Double-Deck Train Carbody using Response Surface Method (반응표면 모델을 이용한 2층열차 차체의 경량화 설계)

  • Hwang Won-Ju;Kim Hyeong-Jin
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.453-458
    • /
    • 2005
  • Weight minimization of double-deck train carbody is imperative to reduce cost and extend life-time of train. It is required to decide 36 thickness of aluminum extruded panels. However, the design variables are two many to tract. moreover, one execution of structural analysis of double-deck carbody is time-consuming. Therefore, we adopt approximation technique to save computational cost of optimization process. Response surface model is used to apporximate static response of double-deck carbody. To obtain plausible response surface model, orthogonal array is empolyed as design of experiment(DOE). Design improvement by approximate model-based optimization is described. Accuracy and efficiency of optimization by using response surface model are discussed.

  • PDF

Optimal scheduling of multiproduct batch processes with various due date (다양한 납기일 형태에 따른 다제품 생산용 회분식 공정의 최적 생산계획)

  • 류준형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.844-847
    • /
    • 1997
  • In this paper, scheduling problem is dealt for the minimization of due date penalty for the customer order. Multiproduct batch processes have been dealt with for their suitability for high value added low volume products. Their scheduling problems take minimization of process operation for objective function, which is not enough to meet the customer satisfaction and the process efficiency simultaneously because of increasing requirement of fast adaptation for rapid changing market condition. So new target function has been suggested by other researches to meet two goals. Penalty function minimization is one of them. To present more precisely production scheduling, we develop new scheduling model with penalty function of earliness and tardiness We can find many real cases that penalty parameters are divergent by the difference between the completion time of operation and due date. That is to say, the penalty parameter values for the product change by the customer demand condition. If the order charges different value for due date, we can solve it with the due date period. The period means the time scope where penalty parameter value is 0. If we make use of the due date period, the optimal sequence of our model is not always same with that of fixed due date point. And if every product have due date period, due date of them are overlapped which needs optimization for the maximum profit and minimum penalty. Due date period extension can be enlarged to makespan minimization if every product has the same abundant due date period and same penalty parameter. We solve this new scheduling model by simulated annealing method. We also develop the program, which can calculate the optimal sequence and display the Gantt chart showing the unit progress and time allocation only with processing data.

  • PDF