• Title/Summary/Keyword: minimal hypersurface

Search Result 28, Processing Time 0.023 seconds

SYMMETRY AND UNIQUENESS OF EMBEDDED MINIMAL HYPERSURFACES IN ℝn+1

  • Park, Sung-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • In this paper, we prove some rigidity results about embedded minimal hypersurface M ⊂ ℝn+1 with compact ∂M that has one end which is regular at infinity. We first show that if M ⊂ ℝn+1 meets a hyperplane in a constant angle ≥ ��/2, then M is part of an n-dimensional catenoid. We show that if M meets a sphere in a constant angle and ∂M lies in a hemisphere determined by the hyperplane through the center of the sphere and perpendicular to the limit normal vector nM of the end, then M is part of either a hyperplane or an n-dimensional catenoid. We also show that if M is tangent to a C2 convex hypersurface S, which is symmetric about a hyperplane P and nM is parallel to P, then M is also symmetric about P. In special, if S is rotationally symmetric about the xn+1-axis and nM = en+1, then M is also rotationally symmetric about the xn+1-axis.

HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.641-648
    • /
    • 1994
  • Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

  • PDF

SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CONDIMENSION 3 IN A COMPLEX SPACE FORM

  • Lee, Seong-Cheol;Han, Seung-Gook;Ki, U-Hang
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.4
    • /
    • pp.649-668
    • /
    • 2000
  • In this paper we prove the following : Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space P(sub)n+1C. If the scalar curvature $\geq$2(n-1)(2n+1), then m is a homogeneous type $A_1$ or $A_2$. Next suppose that the third fundamental form n satisfies dn = 2$\theta\omega$ for a certain scalar $\theta$$\neq$c/2 and $\theta$$\neq$c/4 (4n-1)/(2n-1), where $\omega$(X,Y) = g(X,øY) for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form M(sub)n+1 (c). Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distingusihed normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of M(sub)n (c).

  • PDF

SOME INTEGRATIONS ON NULL HYPERSURFACES IN LORENTZIAN MANIFOLDS

  • Massamba, Fortune;Ssekajja, Samuel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.229-243
    • /
    • 2019
  • We use the so-called pseudoinversion of degenerate metrics technique on foliated compact null hypersurface, $M^{n+1}$, in Lorentzian manifold ${\overline{M}}^{n+2}$, to derive an integral formula involving the r-th order mean curvatures of its foliations, ${\mathcal{F}}^n$. We apply our formula to minimal foliations, showing that, under certain geometric conditions, they are isomorphic to n-dimensional spheres. We also use the formula to deduce expressions for total mean curvatures of such foliations.

STABLE MINIMAL HYPERSURFACES WITH WEIGHTED POINCARÉ INEQUALITY IN A RIEMANNIAN MANIFOLD

  • Nguyen, Dinh Sang;Nguyen, Thi Thanh
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.123-130
    • /
    • 2014
  • In this note, we investigate stable minimal hypersurfaces with weighted Poincar$\acute{e}$ inequality. We show that we still get the vanishing property without assuming that the hypersurfaces is non-totally geodesic. This generalizes a result in [2].

FINITENESS AND VANISHING RESULTS ON HYPERSURFACES WITH FINITE INDEX IN ℝn+1: A REVISION

  • Van Duc, Nguyen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.709-723
    • /
    • 2022
  • In this note, we revise some vanishing and finiteness results on hypersurfaces with finite index in ℝn+1. When the hypersurface is stable minimal, we show that there is no nontrivial L2p harmonic 1-form for some p. The our range of p is better than those in [7]. With the same range of p, we also give finiteness results on minimal hypersurfaces with finite index.