• Title/Summary/Keyword: minimal generators

Search Result 24, Processing Time 0.016 seconds

THE GENERATORS OF COMPLETE INTERSECTION

  • Kang, Oh-Jin;Ko, Hyuong-J.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.829-841
    • /
    • 2000
  • We classify complete intersections I of grade 3 in a regular local ring (R, M) by the number of minimal generators of a minimal prime ideal P over I. Here P is either a complete intersection or a Gorenstein ideal which is not a compete intersection.

  • PDF

A STUDY ON THE SCHUR ALGEBRA OF SIZE 4

  • Song, Young Kwon
    • Korean Journal of Mathematics
    • /
    • v.4 no.2
    • /
    • pp.101-115
    • /
    • 1996
  • In this paper, we will show that the minimal number of generators of any four dimensional, faithful, $\mathcal{B}$(Schur algebra of size 4)-module is two. This result can be applied to classify the isomorphism classes of the class {$\mathcal{B}{\ltimes}N^2{\mid}N$ is a faithful, $\mathcal{B}$-module with $dim_k(N)=4$}.

  • PDF

NOETHERIAN RINGS OF KRULL DIMENSION 2

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.1017-1023
    • /
    • 2010
  • We prove that a maximal ideal M of D[x] has two generators and is of the form where p is an irreducible element in a PID D having infinitely many nonassociate irreducible elements and q(x) is an irreducible non-constant polynomial in D[x]. Moreover, we find how minimal generators of maximal ideals of a polynomial ring D[x] over a DVR D consist of and how many generators those maximal ideals have.

FUZZY BASES OF A FUZZY FINITE STATE MACHINE

  • Hwang, Seok-Yoon
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.553-561
    • /
    • 2007
  • In this paper we propose the concept of fuzzy basis of fuzzy submachine, which is the generalized form of crisp basis of submachine, and we extend the system of generators and free subset to fuzzy forms, from which we prove that minimal system of fuzzy generators, maximally free fuzzy subset, and fuzzy basis are equivalent forms.

$\kappa$-CONFIGURATIONS IN $\mathbb{P}^2$ AND GORENSTEIN IDEALS OF CODIMENSION 3

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.249-261
    • /
    • 1997
  • We find a necessary and sufficient condition for a $\kappa$-confi-guration $\mathbb{X}$ in $\mathbb{P}^2$ to be in generic position. We obtain the number and degrees of minimal generators of some Gorenstein ideals of codimension 3 and so obtain their minimal free resolution s of these ideals.