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A STUDY ON THE SCHUR ALGEBRA OF SIZE 4
YouNnGg KwON SONG

ABSTRACT. In this paper, we will show that the minimal number
of generators of any four dimensional, faithful, B(Schur algebra of
size 4)-module is two. This result can be applied to classify the
isomorphism classes of the class {BxN? | N is a faithful, B-module
with dimg(N) = 4}.

1. Introduction

In this paper, k will denote an arbitrary field. Throughout this
paper, we will denote the Schur algebra of size 4 by B. Thus,

| z,a,b,c,d € k

o8 o &
8 O Q. o

oo o8
oo 8 O

Recall that a commutative k-algebra R is a (B, N)-construction if
R is k-algebra isomorphic to B x N¥, the idealization of a B-module
N, for some finite dimensional, commutative, local, k-algebra B and
finitely generated, faithful, B-module N and natural number /.

In [1], W.C.Brown and F.W.Call showed that the Courter’s algebra
C is a (B, N)-construction, where B is the Schur algebra of size 4,
N = k* , and ¢ = 2. That is, C= Bx(k*)2. But, as we will see in the
next section, there are at least two nonisomorphic B-modules. Thus,
it is very natural to be asked how many isomorphism classes can be
constructed by varying the faithful, B-module N.

Let MB(4) = {N | N is a faithful, B-module and dimy(N) = 4}.
Then, we will show the minimal number of generators of N in M5(4)
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is two. This can be a fundamental building block to classify the iso-
morphism classes of the class {R | R is a k-algebra and R = Bx N2 for
some N € MB(4) }.

2. Classification of M5(4)

We will first show the set MB(4) has at least two isomorphism
classes. To see this, we first need a B-module presentation of k*. We
will denote the ¢,j-th matrix unit of Myx4(k) by E;;. Notice that
Eje€Bifi=1,2j=34.

LEMMA 2.1. Let

E23 E24 E13 E14 @) O
1) A= Mays(B).
M) (—Elg ~Eu O O Ex E24>€ 2x6(B)
Then, B*/CS(A) € MB(4).

Proof. Obviously, B?/CS(A) is a finitely generated, B-module.
Since dimy(B?) = 10 and dimy(CS(A)) = 6,dimy(B*/CS(A)) = 4.

Suppose 7 € Anng(B?/CS(A)). Then, r (IO4 ,T IO € CS(A).
4
-

Thus, (O) , (?) € CS(A) which implies that for some z;,y; € B,
1<4,7<6

r = x1 23 + xoFos + x3E13 + w4 FE14

0= —x1E13 — 2o B4 + 503 + T6 L2

0 =vy1E23 + yoFos + y3Fr3 + yaEra
r=—y1E13 — yaF14 + ysEoz + ye Eou

(2)

Since J(B)? = (0), we can assume z;,y; € k = kI, for 1 < 4,5 < 6.
The second and third equations in (2) imply x1, z2, T5, Z6, Y1, Y2, Y3, Y4
are all zero. Thus, r = x3F13 + x4F14 = y5F23 + ysF24. Therefore,
r = 0. Hence, Anng(B*/CS(A)) = (0) and B?/CS(A) is a faithful,
B-module. 0 OJ
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LEMMA 2.2. Let A be the matrix in Equation (1). Then B*/CS(A)
is B-module isomorphic to k*.

Proof. Let f : B2 — k* be the map defined by f (?j) = e9x+€1Y.
Here, 1 = (1,0,0,0) and e5 = (0,1,0,0). Then, f is a surjective, B-
module homomorphism. If (5)) € ker f, then z = a1y + asE13 +

asFE14+ agFEas + asFEoy and w = b1y 4+ baoEy3 + b3 E14 + by Eas + bs oy

for some a;,b; € k,i =1,...,5. Since f 5} =¢e9z+ 1w =0,a; =
bl = O, b2 = —Qy4, and bg = —a5.
Thus,

z . E13 E14 E23
(o) =o: (") o (8 +n (522
Eou O O\’
b b
ror () +o () +e ()

Hence, (5}) € CS(A). Tt is easy to check that CS(A) C kerf.
Therefore, CS(A) = ker f. Hence, B*/CS(A) = k* as B-modules. (] [J

We can now construct a faithful, B-module of dimension 4 which is
not isomorphic to k* as B-modules.

THEOREM 2.3:. Let

(B3 Eiuu E Eyy O O
3) C‘<E24 Ex O O Eu E14>€M2x6<3>'

Then, B%/CS(C) € MB(4) and B%/CS(C) is not B-module isomorphic
to k*.

Proof. Obviously, B2/CS(C) is a finitely generated, B-module.
Since dimy(B?) = 10 and dimy(CS(C)) = 6, dimy(B?/CS(C)) = 4.

Suppose r € Anng(B*/CS(C)). Then, (g , ?) € CS(C) which
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implies that for some z;,y; € B, 1 <4,7 <6

r=wx1E13 + x2F14 + v3E23 + 14F2y
0=uz1FE24 + x2F23 + x5F13 + 2614
0=wy1FE13 +y2F14 + ysEos + yaFoy
r = y1Eos + yaFo3 + ys Er13 + ye E1a

(4)

Since J(B)? = (0), we can assume z;,y; € k = kI for 1 < 4,5 < 6.
The second and third equations in (4) imply x1, 2, T5, Ts, Y1, Y2, Y3, Y4
are all zero. Thus, r = x3F93 + x4F2y = ysF13 + ysF14. Therefore,
r = 0. Hence, Anng(B%/CS(C)) = (0) and B?/CS(C) € MB(4).
Suppose B2/CS(C) is B-module isomorphic to k* Then, there
exists a B-module isomorphism g : B*/CS(C) — k*. Let f; =

(6) =(g)+cs©ecres©. mam= (7). men

BQ/CS(C) = ﬁ1B+BQB. Since ]{34 = 518 + SQB,g(ﬁl) = &1x1 + E2Y1
and g((2) = e1xy + eays for some x;,y; € B, i = 1,2. Notice
that x1 or y; is unit. To see this, suppose z1,y; € J(B). Then,
g(B1) = e1m1 + e2y1 € k*J(B). The inclusions

=g(81)B+ g(B2)B C k*J(B) + g(82)J (B) C k*

imply that k* = k*J(B) + g(32)J(B). By Nakayama’s Lemma, k* =
g(B2)J(B). This implies B is isomorphic to k* as B-modules and hence
dimy(B)= 4. Since dimy(B)= 5, this is impossible. Hence, z1 or y; is
unit in B. Similarly, xo or y» is unit.

Let A be the matrix given in Equation (1) and let fbe the B-module

homomorphism given in the proof of Lemma 2.2. If 5)) e CS(0),
then
Y1z +yow \
f (:L‘lz i xgw) =e1(z12 + 22w) + €2(y12 + Yow)

= (e171 + €2u1)2 + (€172 + £2y2)w
9(B1)z + g(B2)w

g(Brz + ﬂzw)

9(0) =
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Thus,

(5) (ii Zi) (Z) = (iiiiﬁ) € kerf = CS(A).

Now, there are two cases to consider.

Case 1: Suppose 7 is a unit. Since <§13> € CS(C), we have
24

(3/1 y2> <E13) € CS(A) by the Equation (5). Hence,
1 X2 E24

Y1 Y2 Eiz\ Es3 Eay Eis
(o m) (B ) = () woe (2 )+ ()
_ Eiy O O
=o () rer () v ()

for some a; € k,1 < i < 6 (See the comments after Equation (2)).
Thus,
y1E13 + y2Eos = a1 Ea3 + asEag + azEr3 + asEhg

6
(6) 113 + xoF2y = —a1 B3 — as B4 + asEa3 + agEag.

Let x1 = t114 + s; with t; € k and s1 € J(B). The first equation in
(6) then implies a; = a4 = 0. The second equation in (6) then implies
t; = 0. Thus, 1 € J(B). Since we are assuming x; is a unit, this is
impossible.

Case 2: Suppose y; is a unit. Since (EO23) € CS(C), we have

(y1 Yo ) (E23) € C'S(A) by the Equation (5). Hence,
T o O

Y1 Y2 Eas ) Eos Eoy Eis
() (8= (Z) v () v (75)
Ey O 0]
b b b .
o (50) v () oo ()

for some b; € k,1 <1 < 6. Thus,

) Y123 = b1 B3 + baEoy + b3 Fh3 + baEyy
2123 = —b1E13 — baEy + bs Eaz + b Eay.
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The second equation in (7) implies by = 0 and the first equation in
(7) implies y; € J(B). This is impossible. We conclude there is no
B-module isomorphism g between B2/CS(C) and k. O O

Thus, MB(4) has at least two isomorphism classes [B?/CS(A)] and
[B2/CS(C)]. We will denote the minimal number of generators of B-
module N by ug(N).

THEOREM 2.4. Let N € MB(4). Then, ug(N) = 2.

Proof. Since dimy(N) =4, 1 < ug(N) < 4. Suppose up(N) = 1.
Then, N = aB for some o € N. Let f : B— N be a map defined by
f(b) = ab for b € B. Then, f is a B-module epimorphism. If b € kerf,
then ab = 0. Thus, b € Anng(a) = Anng(aB). Since N is a faithful,
B-module, Anng(aBB) = (0). Therefore, b = 0 and hence f is a B-
module isomorphism. Thus, 5 = dimy(B) = dimy(aB) = 4. This is
impossible. Hence, 2 < ug(N) < 4.

Suppose ug(N) = 4. By Nakayama’s Lemma, we have up(N) =
dimy(N/NJ(B)). Therefore, dimy(NJ(B)) = 0. Thus, NJ(B) = (0).
Since N is a faithful, B-module, we conclude J(B) = (0). This is
impossible.

Suppose up(N) = 3. Then, N = a1 B+a2B + a3B for some a;,i =
1,2,3. After relabeling the a;’s if need be, we can assume a1, as, as
satisfy precisely one of the following four conditions :

Case 1: o;J(B) = (0) for i = 1,2, 3.
Case 2: o;J(B) = (0) for i = 1,2 and asJ(B) #
Case 3: oy J(B) = (0) and «;J(B) # (0) for ¢ =
Case 4: «;J(B) # (0) for i =1,2,3.

- (0).
2,3.

We will show all four cases lead to a contradiction.

Case 1: Suppose «;J(B) = (0) for all i = 1,2,3. Then, NJ(B) =
(0). Since N is a faithful, B-module, J(B) = (0). This is impossible.

Case 2: Suppose «o;J(B) = (0) for all i = 1,2 and a3J(B) #
(0). Suppose azb = 0 for some b € B. If b is a unit, then a3 = 0.
This is impossible. Thus, b € J(B). Hence, b € Anng(N). Since N
is a faithful, B-module, we conclude b = 0. Thus, Anng(az) = (0)
and hence B = a3BC N as B-modules. Since dimy(B) = 5, this is
impossible.
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Case 3: Suppose a1J(B) = (0) and a;J(B) # (0) for i = 2, 3. Since

1 O O
1=10 |,6=\|14 |,035=1] O is a free B-module basis of
O O 1,

B3, the map ¢ : B> — N defined by 90(2?:1 Gibi) = 25’:1 a;b;,
b, € B, 1 = 1,2,3 is a well defined B-module epimorphism. Thus,
B3 /kerp = N as B-modules. Since dimy(B3) = 15 and dimy(N) = 4,
dimy (kerp) = 11. Hence, kere has the following form

11 [ x;
ker@zz vi | B, x,yi,2; €Bi=1,...,11.
=1 Z
x
Furthermore, if | y | € kerp, then z,y,z are not units in B. For
z
x
example, suppose x is a unit in B. Since | y € kerp, a; =
z

(—=1/z)(a2y + asz). Thus, ug(N) < 3 which is impossible.
Since J(B)? = (0), kery can be written in the following form

T
kerp = @;Lk | yi
Zi

Here, x;,vi,2; € J(B),i = 1,...,11. Since anJ(B) = (0),(81 +
J(B)

kero)J(B) = (0) in B3/kerp. Thus, O C keryp. Since
(0]

a;J(B) # (0) for i = 2,3, 1 < dimp(Anng(ey)) < 4 for i = 2,3.

Therefore, we have the following six subcases to consider.

Subcase 1: dimy(Annp(a;)) =1 for i = 2,3
Subcase 2: dimy(Annp(az)) = 2 and dimg(Annp(asz)) =1
Subcase 3: dimy(Annpg(a;)) =2 for i = 2,3

Subcase 4: dimy(Anng(az)) = 3 and dimg(Anng(as))
Subcase 5: dimy(Anng(asz)) = 3 and dimy(Annp(as))

1
2
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Subcase 6: dimy(Annp(a;)) =3 for i = 2,3
We will show all six subcases lead to a contradiction.

Subcase 1: Suppose dimy(Annp(a;)) = 1 for i = 2,3. Let

O O
Anng (o) = ksi,s; € J(B), i = 2,3. Then, (52) , (O) € kero.
O S3

J(B)

Since a1J(B) = (0), ( 0 ) C kerp. Let
@)

0o (5) () ()
() () () (5)- ()

be a basis of kerp. Since dimg(J(B)) = 4 and z; € J(B) for i =
1,...,5,x; € L(Elg, FEi4, Eos, E24) fori=1,...,5. Thus,

Ei3 Eiy Ess Eoy
01 = O ,09 = @) ,03 = @) ,04 = @) ,
O @) 0] 0]
O @) @) @)
55: S2 756: O 757: Y1 758: Y2 P
O S3 21 29
O O O
do= 1| w3 |,010=| ya |,011= | us
z3 zZa z5

is a basis of kery. Therefore, kery can be written in the following form

J O O 5 O
kero=10 | ®k| s2 | k| O | & El v |.
O O S3 i=1 Z
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Since dimy(J(B)) = 4,{s2,y1,... ,ys5} is a linearly dependent set.

Thus, there exist d,cq,...,c5 € k not all zero such that dss + c1y1 +

oo+ cesys = 0. If ¢g = 0 for all + = 1,...,5, then d # 0 and
0

dso = 0. This implies s = 0. This is impossible since | so | is a
0

basis vector of kery. Hence, some ¢; is not zero. We can assume
cs # 0. Thus, y5 € L(s2,y1,...,ys). We can repeat this proof on
S2,Y1,- .. ,ys and assume y4 € L(s2,y1,Yy2,ys). Hence, we may assume
Ya,Ys € L(s2,91,92,y3). Therefore, y4 = dsz + c1y1 + coyo + c3ys for
some d,ci,co,c3 € k. If dos + c107 + c208 + c309 — 619 = 0, then
{95, 97,98, 99,010} is linearly dependent which is impossible. Thus,
@)
d(55 + 61(57 + 0258 + 63(59 — 510 = O with z 7'é 0 in J(B) If z = t83
z
for some t € k, then d55 + 0157 + 6258 + 63(59 — 510 — t56 = 0 and
{85, b6, 07,08, dg, 010} is linearly dependent which is impossible. Thus,
@)
O | € kery\kdg. Therefore, dimy(Annpg(as)) > 2. This is a con-
z
tradiction.

Subcase 2: Suppose dimy(Anng(asz)) = 2 and dimy(Anng(as)) =
1. Then, Anng(as) = ks1 + ksy and Anng(as) = ks for some s; €
J(B),i=1,2,3. Let

Ei3 Eiy Ess Eoy O O
O s O s O 5 O 5 S1 ) 52 ’

O O O O O O

@) T o T3 T4

O ) Y1 ; Y2 ; Y3 ) Ya

S3 21 29 Z3 Z4

be a basis of keryp. Since dimy(J(B)) = 4 and z; € J(B) for i =
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1,...,4, x; € L(Elg,E14,E23,E24) fori=1,...,4. Thus,

Eis Eiy Eos Eoy
01 = O ,09 = @) ,03 = 0] ,04 = @) ,
@) @) @) @)
O @) @) O
0s=1|51]|,06=1|s2],0r=|0 |,06s=|wn |,
0] O 83 z1
@) @) @)
do=|v2 |, 000=1|y3 |,011=| wa
Z9 z3 24

is a basis of kery. Since dimy(J(B)) =4, {s3,21,...,24} is a linearly

dependent set. Thus, there exist d, cq,... ,cs € k not all zero such that

dss +c1z1+ - +cqzg =0. If ¢; =0foralli =1,...,4, then d # 0
O

and dsz = 0. This implies s3 = 0. This is impossible since [ O | is
83

a basis vector of kery. Hence, some ¢; is not zero. We can assume
cy # 0. Thus, z4 = ds3 + c121 + c229 + c3z3 for some d,cq,ca,c3 €
k. If d57 + 61(58 + 6259 + 03510 — 511 = 0, then {57,58,(59,510,(511}
is linearly dependent which is impossible. Thus, dd7 + c10g8 + c2dg +
O
63(510 — 511 = Yy with Yy 75 0 in J(B) If Yy = t181 + t282 for
O
some tl, tQ € ]{3, then d(57 + 61(58 + 0259 + 03(510 - 511 - t155 - t256 =0
and {05, d¢, 07, s, 09, 010, 011 } is linearly dependent which is impossible.
O
Thus, | y | € kero\kds+kds. Therefore, dimy(Annp(az)) > 3. This
O

is a contradiction.

Subcase 3: Suppose dimy(Anng(a;)) = 2 for i = 2,3. Then,
Anng(ag) = ks; + kse and Anng(as) = kss + ksy for some s; €
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J(B),i=1,2,3,4. Let

Ei3 Eiy Ess Es, @) )
O s O s O ; O 3 S1 ’ 52 ’

O O 0] O O O

@) O xr1 X9 x3

O ) O ) U1 y Y2 y Y3

S3 S4 21 22 <3

be a basis of kery. Since dimy(J(B)) = 4 and z; € J(B) for i =
1,2,3, x; € L(Elg,E14,E23,E24) for i = 1,2,3. Thus,

Ei3 Eiy4 Eas Eoy
512 O 752: O 753: O 354: O 9
O O O O
O O O O
0s = | s1 |,06 =1 s2 | ,07= O |, = o1,
@) @) S3 S4
O O O
do=1|v1 |,010=1|v |,0u1u=1ys
Z1 Z9 z3

is a basis of kery. Since dimy(J(B)) = 4, {s1, S2,y1, Y2, y3} is a linearly
dependent set. Thus, there exist di,ds, c1,ca,c3 € k not all zero such
that disy 4+ doss + c1y1 + coys +c3ys3 = 0. If ¢; =0 for all 1 = 1,2, 3,
then dis; + doss = 0. Since s, so are linearly independent vectors in
J(B),dy = dy = 0. This is impossible. Thus, ¢; # 0 for some 1 < ¢ < 3.
We can assume c3 # 0. Hence, y3 = dis1 + dass + c1y1 + coys for
some dl,dg,cl,CQ c k. If d165 + d256 + 6159 + 62510 — 511 = O, then
{95, 06,09, 010,911} is linearly dependent which is impossible. Thus,
O
d105 + dadg + c109 + 2019 — 011 = O with z # 0 in J(B) If
z
z = t383+1t484 for some t3,t4 € k, then d105+dodg+c109+ o010 — 011 —
O
t307—t4ds = 0. This is a contradiction. Thus, | O | € kerp\kd;+kds.
z
Therefore, dimy(Annp(as)) > 3 and this is a contradiction.
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Subcase 4: Suppose dimy(Anng(asz)) = 3 and dimy(Anng(as)) =
1. Then, Anng(as) = ks + ksy + ksz and Annpg(as) = ks4 for some
s; € J(B),i=1,2,3,4. Let

Eq3 Eiy Eas Eoy 0] O
O P O P O 9 O ) 81 Y 82 Y

O 0] 0] O 0] O

@) @) X1 To x3

ss |, O lwvi | {w].|w

@) S4 21 29 23

be a basis of kerp. Since dimg(J(B)) = 4 and x; € J(B),x; €
L(Eh3, Era, Eas, Eag) for i = 1,2, 3. Thus,

Eis Eiy Eos Eyy
01 = O ,09 = @) ,03 = @) ,04 = 0] ,
O O @) @)
@) O @) @)
0s =151 |,06=1|s2],0r=|s3],0s=1|0 |,
O O O S4
O O O
do=1y1 |dw0=1| %2 |, 011=|uys
Z1 Z9 z3

is a basis of kery. Since dimy(J(B)) = 4,{s1, S2,3, Y1, Y2, Y3} is a
linearly dependent set. Thus, there exist di,ds,ds,c1,ca,c3 € k not
all zero such that dys; + doss + dsss + ciy1 + coys + c3ys = 0. If
Cc;, = 0 for all 1 = 1,2,3, then d181 + d282 + d383 = 0 Since S1,82,83
are linearly independent vectors in J(B),d; = d2 = d3 = 0. This is
impossible. Thus, ¢; # 0 for some 7. We can assume c3 # 0. Hence,
Y3 = d181 + daSo + d3ss + c1y1 + coyo for some dy,ds, ds, ci,co € k. If
d105 + dodg + d3d7 + ¢109 + c2010 — 011 = 0, then {55, 06, 07,09, 010, 511}
is linearly dependent which is impossible. Thus, d;d5 + d2dg + d3d7 +
@)
c109+c2010—011 = | O | with z # 0in J(B). If z = ts4 for some t € k,
z
then d155 +d256 +d357 +0159 +62510 — 511 —t58 = 0. This is impossible
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O
since {95, dg, 07, 0, 09, 910, 011 } is linearly independent. Thus, | O | €

z
kerp\kds. Therefore, dimy(Anng(as)) > 2 and this is a contradiction.

Subcase 5: Suppose dimy(Anng(az)) = 3 and dimy(Anng(as)) =
2. Then, Annp(ag) = ks1 + ksa + kss and Annp(as) = kss + kss for
some s; € J(B),i=1,2,3,4,5. Let

Eq3 Eiy Ess Es, 0] O
O 9 O 9 O 9 O 9 S]_ 9 82 Y

O @) @) O @) O

O O O T )

53 ; 0 ) O ’ U1 ’ Y2

@) S4 S5 21 %)

be a basis of kerp. Since J(B) = L(E13, E14, Fa3, Foy) and x1,x9 €
J(B),x1,x2 € L(E13, Ev4, Ea3, Es4). Thus,

E13 E14 E23 E24
0 = O |,00= O |,03= O |,04= o |1,
@, @) @) @)
@) O O @)
55: S1 ,(56: S92 ,57: S3 768: O y
O O O S4
@) @) O
dog=1 0O |,010=1| y1 |,011= | 92
S5 21 22

is a basis of kerp. Since dimy(J(B)) = 4, {s1, s2, S3,y1, Y2} is a linearly
dependent set. Thus, there exist dq,ds,d3,c1,co € k not all zero such
that dis1 + doso + dsss + c1y1 + coyo = 0. If ¢ = ¢co = 0, then
dy181 4 dass +dzss = 0. Since s1, S2, s3 are linearly independent vectors
in J(B),d; = dy = d3 = 0. This is impossible. Thus, ¢; # 0 for some
i. We can assume cy # 0. Hence, ys = dys1 + dase + d3sz + ¢y for
some dl,dg,dg,cl € k. If d1(55 —+ d256 + d357 + 01(510 - (511 = 0, then
{95, 06, 07,010,011} is linearly dependent which is impossible. Thus,
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d105 + dobs + d3d7 + c1010 — 011 = 8 with z # 0 in J(B). If
2z = t484+1585 for some ty4,t5 € k, then d1255 +dodg+d3zd7+c1610— 011 —
t408 —t509 = 0. This is again impossible since {05, dg, d7, ds, 9, 010, 011 }
is linearly independent. Thus, (O) € keryp\kdsg + kdg. Therefore,
dimy(Anng(as)) > 3 which is a Cofltradiction.

Subcase 6: Suppose dimy(Anng(a;)) = 3 for i = 2,3. Note that

dimy(Anng(as)) + dimg(Annp(as)) =
dimy(Anng(as) + Anng(as)) + dimg(Anng(as) N Anng(as)).

Since dimg(Annpg(az) + Anng(as)) < dimg(J(B)) = 4, Equation (8)
implies dimy(Anng(ag) N Anng(as)) > 2 Thus, there is 0 # b €
Anng(ag) N Anng(as). This is a contradiction. We have now shown
any of the subcases in Case 3 lead to a contradiction. Hence, Case 3
is impossible.

Case 4: Suppose «;J(B) # (0) for i = 1,2,3. Let n; =
dimy(Anng(c;)). By relabeling the ofs if need be, there are ten sub-
cases to consider.

Subcase 1: Suppose n; =1 for i = 1,2, 3.
Subcase 2: Suppose nqy = 2,ny =ng = 1.
Subcase 3: Suppose ny =ng =2,n3 = 1.
Subcase 4: Suppose n; =2 for i = 1,2, 3.
Subcase 5: Suppose ny = 3,ny =ng = 1.
Subcase 6: Suppose ny = 3,ny = 2,n3 = 1.
Subcase 7: Suppose n1 = 3,ny = ng = 2.
Subcase 8: Suppose ny =ng =3,n3 = 1.
Subcase 9: Suppose nqy = ny = 3,n3 = 2.
Subcase 10: Suppose n; = 3 for i = 1,2, 3.

A proof similar to that given in Case 3 will show that Subcase 1 through
Subcase 9 are impossible. Subcase 10 is also impossible. To see this,
let V' be a vector space and suppose W;,7 = 1, 2,3 are subspaces of V.
Suppose dimg (V) = n. Then, we have the following equation.



A study on the Schur algebra of size 4 115

(9)
3
dimy,(Wy 0 Wy N W3) = Z n — dimg(W;))

+ {(n — dimy (W, +W2)) (n — dimp (W1 N Wy) + W3))}.

Suppose V = B and W; = Anng(a;),i = 1,2,3. Then, Equation (9)
implies dimg (W1 NWoNW3) = 9—dimg (W1 +W2) dzmk((Wl NWs)+
W3). Since d@mk(Wl +W2) S 4 and dka((WlﬂWQ)—f—Wg) S 4, we have
dimy, (W1 N We N W3) > 1. Thus, there exists 0 # b € Wi N Wy N W,
Since W; = Annp(a;), i = 1,2,3, a;b = 0 for i = 1,2,3. Thus,
b€ Anng(N) = (0) which is a contradiction.

Therefore, all four cases are impossible. Hence we conclude that
/LB(N) = 2. U U
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