• Title/Summary/Keyword: minimal codes

Search Result 40, Processing Time 0.021 seconds

ON THE EXTREMAL TYPE I BINARY SELF-DUAL CODES WITH NEAR-MINIMAL SHADOW

  • HAN, SUNGHYU
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.1_2
    • /
    • pp.85-95
    • /
    • 2019
  • In this paper, we define near-minimal shadow and study the existence problem of extremal Type I binary self-dual codes with near-minimal shadow. We prove that there is no such codes of length n = 24m + 2($m{\geq}0$), n = 24m + 4($m{\geq}9$), n = 24m + 6($m{\geq}21$), and n = 24m + 10($m{\geq}87$).

PRIMITIVE IDEMPOTENTS IN THE RING F4[x]/〈xpn-1〉 AND CYCLOTOMIC Q CODES

  • Batra, Sudhir;Mathur, Rekha
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.971-997
    • /
    • 2018
  • The parity of cyclotomic numbers of order 2, 4 and 6 associated with 4-cyclotomic cosets modulo an odd prime p are obtained. Hence the explicit expressions of primitive idempotents of minimal cyclic codes of length $p^n$, $n{\geq}1$ over the quaternary field $F_4$ are obtained. These codes are observed to be subcodes of Q codes of length $p^n$. Some orthogonal properties of these subcodes are discussed. The minimal cyclic codes of length 17 and 43 are also discussed and it is observed that the minimal cyclic codes of length 17 are two weight codes. Further, it is shown that a Q code of prime length is always cyclotomic like a binary duadic code and it seems that there are infinitely many prime lengths for which cyclotomic Q codes of order 6 exist.

Extension of Minimal Codes for Application to Distributed Learning (분산 학습으로의 적용을 위한 극소 부호의 확장 기법)

  • Jo, Dongsik;Chung, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.479-482
    • /
    • 2022
  • Recently, various artificial intelligence technologies are being applied to smart factory, finance, healthcare, and so on. When handling data requiring protection of privacy, distributed learning techniques are used. For distribution of information with privacy protection, encoding private information is required. Minimal codes has been used in such a secret-sharing scheme. In this paper, we explain the relationship between the characteristics of the minimal codes for application in distributed systems. We briefly deals with previously known construction methods, and presents extension methods for minimal codes. The new codes provide flexibility in distribution of private information. Furthermore, we discuss application scenarios for the extended codes.

A New Extension Method for Minimal Codes (극소 부호의 새로운 확장 기법)

  • Chung, Jin-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.506-509
    • /
    • 2022
  • In a secret sharing scheme, secret information must be distributed and stored to users, and confidentiality must be able to be reconstructed only from an authorized subset of users. To do this, secret information among different code words must not be subordinate to each other. The minimal code is a kind of linear block code to distribute these secret information not mutually dependent. In this paper, we present a novel extension technique for minimal codes. The product of an arbitrary vector and a minimal code produces a new minimal code with an extended length and Hamming weight. Accordingly, it is possible to provide minimal codes with parameters not known in the literature.

Minimal Polynomial Synthesis of Finite Sequences

  • Lee, Kwan Kyu
    • Journal of Integrative Natural Science
    • /
    • v.1 no.2
    • /
    • pp.149-159
    • /
    • 2008
  • We develop two algorithms that nd a minimal polynomial of a finite sequence. One uses Euclid's algorithm, and the other is in essence a minimal polynomial version of the Berlekamp-Massey algorithm. They are formulated naturally and proved algebraically using polynomial arithmetic. They connects up seamlessly with decoding procedure of alternant codes.

  • PDF

MINIMAL QUADRATIC RESIDUE CYCLIC CODES OF LENGTH $2^{n}$

  • BATRA SUDHIR;ARORA S. K.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.25-43
    • /
    • 2005
  • Let F be a finite field of prime power order q(odd) and the multiplicative order of q modulo $2^{n}\;(n>1)\;be\; {\phi}(2^{n})/2$. If n > 3, then q is odd number(prime or prime power) of the form $8m{\pm}3$. If q = 8m - 3, then the ring $R_{2^n} = F[x]/ < x^{2^n}-1 >$ has 2n primitive idempotents. The explicit expressions for these primitive idempotents are obtained and the minimal QR cyclic codes of length $2^{n}$ generated by these idempotents are completely described. If q = 8m + 3 then the expressions for the 2n - 1 primitive idempotents of $R_{2^n}$ are obtained. The generating polynomials and the upper bounds of the minimum distance of minimal QR cyclic codes generated by these 2n-1 idempotents are also obtained. The case n = 2,3 is dealt separately.

CONSTRUCTION OF TWO- OR THREE-WEIGHT BINARY LINEAR CODES FROM VASIL'EV CODES

  • Hyun, Jong Yoon;Kim, Jaeseon
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.29-44
    • /
    • 2021
  • The set D of column vectors of a generator matrix of a linear code is called a defining set of the linear code. In this paper we consider the problem of constructing few-weight (mainly two- or three-weight) linear codes from defining sets. It can be easily seen that we obtain an one-weight code when we take a defining set to be the nonzero codewords of a linear code. Therefore we have to choose a defining set from a non-linear code to obtain two- or three-weight codes, and we face the problem that the constructed code contains many weights. To overcome this difficulty, we employ the linear codes of the following form: Let D be a subset of ��2n, and W (resp. V ) be a subspace of ��2 (resp. ��2n). We define the linear code ��D(W; V ) with defining set D and restricted to W, V by $${\mathcal{C}}_D(W;V )=\{(s+u{\cdot}x)_{x{\in}D^{\ast}}|s{\in}W,u{\in}V\}$$. We obtain two- or three-weight codes by taking D to be a Vasil'ev code of length n = 2m - 1(m ≥ 3) and a suitable choices of W. We do the same job for D being the complement of a Vasil'ev code. The constructed few-weight codes share some nice properties. Some of them are optimal in the sense that they attain either the Griesmer bound or the Grey-Rankin bound. Most of them are minimal codes which, in turn, have an application in secret sharing schemes. Finally we obtain an infinite family of minimal codes for which the sufficient condition of Ashikhmin and Barg does not hold.

Search Methods for Covering Patterns of CRC Codes for Error Recovery (오류 복구를 위한 CRC 코드 커버링 패턴의 탐색 방법)

  • Sung, Won-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.299-302
    • /
    • 2002
  • Error detection and correction using CRC and the general class of cyclic codes is an important part of designing reliable data transmission schemes. The decoding method for cyclic codes using covering patterns is easily-implementable, and its complexity de-pends on the number of covering patterns employed. Determination of the minimal set of covering patterns for a given code is an open problem. In this paper, an efficient search method for constructing minimal sets of covering patterns is proposed and compared with several existing search methods. The result is applicable to various codes of practical interest.

ON CLOSING CODES

  • Shaldehi, Somayyeh Jangjooye
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.359-366
    • /
    • 2018
  • We extend Jung's result about the relations among bi-closing, open and constant-to-one codes between general shift spaces to closing codes. We also show that any closing factor code ${\varphi}:X{\rightarrow}Y$ has a degree d, and it is proved that d is the minimal number of preimages of points in Y. Some other properties of closing codes are provided. Then, we show that any closing factor code is hyperbolic. This enables us to determine some shift spaces which preserved by closing codes.