Journal of Control, Automation and Systems Engineering, Vol. 8, No. 4, April, 2002 299

i FTE flet CRC ZE

Fw2 wElo] B b

Search Methods for Covering Patterns of CRC Codes for Error Recovery

ZR

(Wonjin Sung)

Abstract : Error detection and correction using CRC and the general class of cyclic codes is an important part of designing reliable data
transmission schemes. The decoding method for cyclic codes using covering patterns is easily-implementable, and its complexity de-

pends on the number of covering patterns employed. Determination of the minimal set of covering patterns for a given code is an open
problem. In this paper, an efficient search method for constructing minimal sets of covering patterns is proposed and compared with

several existing search methods. The result is applicable to various codes of practical interest.

Keywords : cyclic codes, covering pattern, error recovery, forward etror correction

L. Introduction

CRC(Cyclic Redundancy Check) codes play an important role
in reliable transmission of data information in communication
networks. By calculating check-sum at the destination node,
errors incurred during the transmission are easily detected and
erroneous data packets are requested for re- transmission. CRC
codes have been extensively studied in coding community under
the name shortened cyclic codes. Many standard CRC codes have
been proposed and used for different level of protection, such as
CRC-8, CRC-12, CRC-CCITT, CRC-32[1], where the numeric
parts represent the number of parity (or redundancy) bits.

Performance of error detection using CRC codes has been in-
vestigated for a number of different applications, including recent
reports on ATM networks[2], interactive video streaming[3].
and traffic load balancing[4]. Novel approaches for utilizing
unique properties of CRC have been also proposed[5][6]. Soft-
ware and hardware implementation with minimal computational
complexity is an important issue, and [7] and [8] report efficient
algorithms. As is well-known, CRC codes and the general class
of cyclic codes is capable of not only detecting errors, but also
correcting errors, and increasingly many applications and proto-
cols support error correction via decoding cyclic codes.

This paper relates to the problem of devising an efficient and
simple decoder for (n, k) cyclic block codes. In particular, we
focus on error-trapping decoding and its generalized form using
covering patterns, which are also called covering polynomials
[9]. The algorithm using covering patterns is a simple and flex-
ible method of decoding cyclic codes, and its complexity de-
pends on the number of covering patterns employed. The deter-
mination of a minimal set of covering patterns for a given cyclic

Azl 1 2001, 12, 15, $ASE : 2002. 1. 15.

Az A7 ekal A 2R 8y wsung@sogang.ac.kr)

¥ B AFE dEgekag 247 29T RO1-2001-00542 XY o
2 YRS

code, which is equivalent to designing minimal complexity de-
coder, is an open problem [10]. The minimal sets are known for
limited cases, and covering patterns for decoders are often deter-
mined in an ad-hoc fashion or via extensive computer search.

Here we compare several search procedures for finding the
covering patterns and propose an efficient search algorithm which
determines a minimal set of covering patterns. In Section 2, al-
gorithm description of the decoding cyclic codes using covering
patterns is given, and search methods for finding minimal sets of
covering patterns are described and compared in Section 3.
Conclusions are given in Section 4.

I1. Algorithm Description

The error-trapping-based decoding algorithms all rely for
their effectiveness on the re-encoding principle: if we know the
correct values of any set of k linearly independent positions, we
can re-encode the codeword from them (and by comparison with
the received word, we can determine the error pattern, if de-
sired). Thus instead of having to determine the complete set of
errors, it is sufficient to determine the errors in a given set of &
linearly independent bits.

The various error-trapping-based algorithms differ in the
ways they attempt to find the true values of the symbols in a set
of k linearly independent positions. In information set decoding,
we take a large enough number of information sets to ensure that
at least one is error-free. It has been shown that this algorithm is
the best of the family in an asymptotic sense: for virtually all
long codes, this is essentially optimum. Unfortunately, in this case
it is extremely difficult to determine a minimal set for a specific
code. As a result, optimum information sets are known for very
few codes, notably the Golay codes, and the general problem
seems unlikely to be solved. Note also that each re-encoding
operation can take 4 operations, which for medium length

codes can easily nullify the asymptotic advantage the algorithm

300

has over other members of the family.

Permutation decoding addresses the problem of ensuring that
the k-sets are linearly independent by using the automorphism
group of the code. One known information set can then be per-
muted onto others. We are still left with the problem of finding
minimal sets, and we lose the property that any code is com-
pletely decodable by the method.

In the covering pattern method, we assume we have a cyclic
code, and take n information sets, consisting of all sets of k(cy-
clically) consecutive positions. We restrict the guesses of errors
to have the same pattern for each information set. These guesses
can be represented as polynomials, therefore also called covering
polynomials. To implement this, we would have a number of
independent sub-processors, each devoted to a single covering
pattern. Starting from the syndrome sequence, each sub-proces-
sor adds the codeword whose information positions correspond
to its covering pattern. This gives another coset element. The
likelihood of this coset element is computed for each subproces-
sor estimate using some metric computer, and the best estimate
is stored. Each subprocessof subtracts out its added codeword,
shifts the syndrome sequence left one position, and repeats the
above operations. After n such steps, the candidate coset leader
that gave the best metric is taken as the correct coset leader.

The procedure has several advantages. We are not limited by
the bounded distance of the code, and can achieve complete hard
decision decoding. The optimal error pattern will not be immedi-
ately recognizable, but can be declared optimal when the algo-
rithm terminates. More importantly, we are not constrained to
use hard decision decoding. The metric calculator mentioned in
the algorithm description can be adapted to perform soft-deci-

sion decoding.

III. Search Methods

One approach to obtain the solution to the problem of finding
minimal sets of covering patterns is using search procedures. For
a given problem, we have a set of candidate covering patterns
and a set of “interval patterns” to be covered. Interval patterns
refer to vectors representing relative intervals between succes-
sive error locations in a transmitted code block. The most straight-
forward way of searching is to consider all combinations of the
increasing number of candidate covering patterns, until a combi-
nation is found to cover all interval patterns. Due to its large com-
putational effort, this brute force search can only be performed
for the problems of small dimensions (short codes correcting
small number of errors). Combinatorial approaches can be found
in the literature, and a systematic formulation of these is the
prime implicant table problem[11].
1. Prime Implicant Tables

A prime implicant table is a matrix with an arbitrary number
of rows and columns and its elements are either marked or

unmarked. For a given table, the prime implicant table problem

MOt - KiSat - AEisst =241 Kl 8 H Kl 4 & 2002 4

is to find a smallest set of rows such that every column of the
table has a marked entry in at least one of the rows in the set. By
letting the rows represent covering patterns and the columns
represent interval patterns, we formulate the covering pattern
problem into the prime implicant table problem. A table element
is marked if the covering pattern of the element row covers the
interval pattern of the element column. Approaches to solve the
prime implicant table problem have been suggested, and for
general solutions, search algorithms including enumeration
procedures of some sort must be used.

One way to simplify the prime implicant table is to use row
dominance and column dominance. Row i dominates row j if
row i has marked elements in every column in which row j has
marked elements. Similarly, column 7 is said to dominate column
Jj if column 7 has marked elements in every row in which column
§ has marked elements. Any dominating row or column can be
removed from the table without affecting the solution, and when
no rows or columns can be removed by dominance, the table is
called cyclic. The prime implicant table problems can be sim-
plified by taking advantage of row and column dominance, and
these properties can also be applied to determine the covering
patterns.

2. Linear Programming and Branching Method

One of the most commonly used techniques to solve the
prime implicant table problem having a cyclic form is to apply in-
teger linear programming algorithms. The (primal) linear pro-
gramming method with integer constraint is equivalent to the
covering pattern problem when rows are taken as covering

patterns and columns are taken as interval patterns:
minimize i;xz- subject to i;a,vj x =1
1= =

for j=1,...,J, where I is the number of rows, Jis the number of
columns, g =1 if i-th row covers the j-th column and 0 other-
wise, and x,=(Q or 1 for /=1,...,I

The dual problem is interpreted as finding a largest set of
interval patterns such that at most one covering pattern covers
each interval pattern in the set. It is well known that the global
solutions of the primal and the dual linear programming without
the integer restrictions are identical. Furthermore, the solution is
upper bounded by any feasible solutions of the primal problem,
and lower bounded by any feasible solutions of the duat prob-
lem. It follows that the global solution of the unrestricted
problem, and any feasible solutions of the restricted dual prob-
lem give lower bounds to the solution. The linear programming
without integer restrictions can be computed by efficient algo-
rithms such as the simplex algorithm, and the solutions provide a
tighter lower bound than the dual integer solutions.

An upper bound can be obtained by a greedy algorithm. The
algorithm begins with an empty set of covering patterns and all
interval patterns to be covered. At each stage of the greedy algo-
rithm, the covering pattern that covers the most number of the

Journal of Control, Automation and Systems Engineering, Vol. 8, No. 4, April, 2002 301

remaining interval patterns is chosen and added to the set, and
the interval patterns covered by the chosen covering pattern are
deleted. The procedure continues until all interval patterns are
deleted, and the resulting set of covering patterns is claimed as a
covering set for the problem.

The exact solution of a covering pattern problem is the solu-
tion of the corresponding primal integer programming problem.
The branch and bound algorithm is a useful approach for solv-
ing discrete optimization and integer programming problems in
general. It searches for an optimal feasible solution by doing
only a partial enumeration. A brief description of the algorithm
is as follows: At each stage of the algorithm, the set of feasible
solutions is partitioned into many simpler subsets, and a lower
bounding strategy using Lagrangian relaxation method is applied
to determine which of the subsets is most promising for further
search. Some of the subsets are discarded from the search if the
lower bound for those subsets is greater than the incumbent,
which is the best solution known at that stage. The selected
subset is searched for to find the best feasible solution in the set.
If such a solution is found, we either update the incumbent or
discard the set. If such a solution is not found, another partition
is made and the procedure continues. After all undiscarded
subsets have been searched, the algorithm terminates and the
incumbent is guaranteed to be the optimal solution.

The (21,15) code with s = 3, where s is the number of errors
to be corrected, is an example that the dual integer solution can
be the same as the unrestricted global solution. To give an idea
of the computational complexity of the search algorithm, we
mention that the (31,21) code with s=3 has 231 variables (cover-
ing patterns) with 109 constraint equations (coverage of each
interval pattern by the covering patterns), and the (31,16) code
with s=4 has 136 variables with 651 constraints. The branch and
bound algorithm works reasonably well for short codes, but the
complexity grows rapidly for larger values of n, £, and s. It is
also observed that the lower bounding strategy using the
Lagrangian relaxation method becomes less effective when the
number of interval patterns becomes larger, meaning a larger
number of candidate covering pattern sets are searched for.
Computation results for some example codes are shown in Table
1. Simplex algorithm results provide tight lower bounds for the
cases of (21,11), (21,14), and (31,21) codes, and confirm the
greedy algorithm result is optimal for the case of (31,21) code.

Table 1. The number of covering patterns.

(n k) s Dual Simplex | Optimal | Greedy
2L11) 4 3 5.25 6 7
(21,14) 3 4 4.31 5 6
(21,15) 3 6 6.00 7 8
(31,16) 4 5 6.96 9 10
(31.21) 3 5 5.25 6 6

Greedy algorithm produces covering pattern sets that are subop-
timal in the given examples.
3. A Reduced-Complexity Search Algorithm

Covering sets for an (#, £) code with a specified value of s
can include only covering patterns of a single bit location,
termed single patterns hereafter, if the condition A/% < 2/s is
satisfied. Determination of covering sets for the case of R (2/s
is an important special class of the covering pattern problem.
Many cyclic codes of short to medium length satisfy such a rate
condition when they are applied to correct up to the bounded
distance or more.

The proposed search algorithm finds a minimal set of single
patterns for given n, k, and s that satisfy the condition %/# <

2/s. The algorithm searches for a small subset of covering
pattern combinations rather than performing a brute force search.
The basic idea of the algorithm is to build up sufficient sets of
covering patterns from the middle of the information positions
outwards. Thus a new covering pattern is always added to the
left of the current leftmost covering pattern or to the right of the
rightmost. This reduces a significant amount of the required
number of computations; however, it can readily be verified that
in this kind of procedure, a bad choice of a new covering pattern
can irreparably damage the sufficiency of the resulting covering
pattern set. Thus the procedure is designed to ensure that no
error patterns will be missed in the building of the covering
pattern set. The procedure results in a number of sufficient sets,
and the minimal such set is then guaranteed to be globally
optimum. The proposed search algorithm is summarized as
follows. (Also see Fig. 1.)

1) We are given an (#, &) code to correct s errors, where
k/n<2/s.For each i=k+1-{n/s], ...,[n/s], let j=1, m =1,
and M,= {x ™}, where [x] denotes the ceiling function of x.

2) Determine 4; for the given monomial set M. If i,<k, the

search procedure continues in Step 3. Otherwise, go to Step 4.

3) Increase j by one, and let m;=4;_,if ; is odd, m;=

i k v
@ | %%/, '
| /] —

(b

: m -
™ma my m;i
o | WA 277 L O
i o ' i

Fig. 1. Search locations for covering patterns.

302

k+1— ki, if jiseven. M;= M; U{m™}. Repeat Step 2.

4. The set M;={x",x™,...,x™} is a minimal covering set
of single patterns for the code.

The proposed algorithm is much more efficient than the
brute-force search in that it only searches for the single pattern
sets that are sufficient to cover all interval patterns. To find an

optimal covering pattern set of size ¢ for an (#, k) code, a brute-

force search should at least consider (g) + (f) +...+ (c—kl)

sets of single patterns, and furthermore would need to check
whether each of them is sufficient to cover all interval patterns,
which itself requires considerable computations. The search al-
gorithm considers L; X L% ... x L ._; different combinations of

covering patterns where L ; is the length of the region for the ;

-th pattern.

IV. Conclusions

The minimal set of covering patterns for given cyclic codes
can be obtained by using search algorithms. We observed that
the covering pattern problem can be formulated as a particular
case of the prime implicant table problem. The general prime
implicant table problem belongs to the NP-complete class, which
suggests the difficulty of obtaining general solutions for the
covering pattern problem. The branch and bound algorithm is an
effective method to find optimal covering sets for any given
problem, but its applicability is limited to relatively short codes.
The simplex algorithm has been used to give a numerical lower
bound to the optimal size.

The search algorithm proposed in Section IIl. 3 is applicable
for arbitrary code parameters n, k, and s satisfying £/n < 2/s,

c—1
and its complexity is no greater than (chl> where c is the

minimal number of covering patterns required. The algorithm is
implemented by a simple recursive structure to determine a min-

oA A

1990 M2l 2453k £4. 1992
W ou S oA Ay g W) F3g
FHEECS) A AL 19951 Fojstl o
AL 1996 1€ ~20001d 84 W[
Hughes Network SystemsAl & ¢l &3
2. 20003 99~ A A Zepsta A
2bg sk 2, Aok tiAd
Ag7)%, S Ao

N0t - AiSat - ABIESE =2K] Kl 8 H Kl 4 S 2002 4

imal covering set for a given code.

il

et

S

[1] S.B. Wicker, Error Control Systems for Digital Communi-
cation and Storage, Upper Saddle River, NJ: Prentice-Hall,
1995.

{2] F. Braun and M. Waldvogel, “Fast incremental CRC up-
dates for IP over ATM networks,” in Proc. IEEE Work-
shop on High Performance Switching and Routing, pp. 48-
52,2001.

[3] J. Cai and C. W. Chen, “Video streaming: An FEC-based
novel approach,” in Proc. Canadian Conf. Elec. and Comp.
Eng.,vol. 1, pp. 613-618, 2001.

[4] Z. Cao, Z. Wang, and E. Zegura, “Performance of hasing-
based schemes for internet load balancing,” in Proc. 2000
IEEE INFOCOM, vol. 1, pp. 332-341, 2001.

[51 R. Anand, K. Ramchandran, and 1. V. Kozintsev, “Contin-
uous error detection for reliable communications,” IEEE
Trans. Commun., vol. 49, no. 9, pp. 1540-1549, Sept. 2001.

[6] A.J. McAuley, “Weighted sum codes for error detection
and their comparison with existing codes,” [EEE/ACM
Trans. Networking, vol. 2, no. 1, pp. 16-22, Feb. 1994,

[7] D. C. Feldmeier, “Fast software implementation of error
detection codes,” IEEE/ACM Trans. Networking, vol. 3, no.
6, pp. 640-651, Dec. 1995.

[8] R. Nair, G. Ryan, and F. Farzaneh, “A symbol based
algorithm for hardware implementation of cyclic redundan-
cy check,” in Proc. 1997 VHDL Int. Users’ Forum, pp. 82-87.

[9] T. Kasami, “A decoding procedure for multiple- error-
correcting cyclic codes,” IEEE Trans. Inform. Theory, vol.
10, pp. 134-138, 1964.

[10] F. J. MacWilliams and N. J. A. Sloane, The Theory of
Error Correcting Codes, North-Holland, New York, 1977.

[11] L. B. Pyne and E. J. McCluskey, Jr., “The reduction of re-
dundancy in solving prime implicant tables,” IEEE Trans.
Electronic Computers, vol. 11, pp. 473-482, 1962.

