• Title/Summary/Keyword: mineralogical

Search Result 1,733, Processing Time 0.025 seconds

A Study on the Trend of Stone Industry and Residue (석재 산업 및 부산물 동향 조사)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Youn, Hojoong;Lim, Jong-Hwan
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Stone has been used for various purposes, such as for building stones, megaliths, ornamental stones, hunting and grinding throughout history. The global stone production amounted to around 153 million tons in 2018 excluding quarry waste, up 0.8% on year. Of them, stone residues accounted for 71%. The worldwide stone trading decreased 1.5 million tons to 56.5 million tons in 2018. The average price of stone was 34.1 USD per square meter, down 2.5% from the previous year. It's down 7% when only considering trading between the world's top twelve exporters. But in the three leading countries, Italy, Greece and Brazil, the price saw a sharp increase. In 2018, stone imports and exports totaled 815 million square meters, raising over 20 billion USD of revenue. Imports were largely led by six countries: China, Italy, Turkey, India, Brazil, Spain and Portugal, from largest to smallest.) In terms of stone use per 1,000 population, it was 117 square meters in 2001, and it increased to 264 square meters in 2017 and 266 square meters in 2018. The volume more than doubled during the period, but it has been declining slightly in recent years. China, India, Saudi Arabia and Belgium were the only countries that the stone use per 1,000 population exceeded 1,000 square meters. The increase rate was steepest in China, India and the United States, from largest to smallest. The global stone production is likely to grow to 69.85 million tons by 2025, despite the global economic downturn.

Cesium Sorption to Granite in An Anoxic Environment (무산소 환경에서의 화강암에 대한 세슘 수착 특성 연구)

  • Cho, Subin;Kwon, Kideok D.;Hyun, Sung Pil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.101-109
    • /
    • 2022
  • The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.

Characterization of Synthesized Carbonate and Sulfate Green Rusts: Formation Mechanisms and Physicochemical Properties (합성된 탄산염 및 황산염 그린 러스트의 형성 메커니즘과 이화학적 특성 규명)

  • Lee, Seon Yong;Choi, Su-Yeon;Chang, Bongsu;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.111-123
    • /
    • 2022
  • Carbonate green rust (CGR) and sulfate green rust (SGR) commonly occur in nature. In this study, CGR and SGR were synthesized through co-precipitation, and their formation mechanisms and physicochemical properties were investigated. X-ray diffraction (XRD) and Rietveld refinement showed both CGR and SGR with layered double hydroxide structure were successfully synthesized without any secondary phases under each synthetic condition. Refined structural parameters (unit cell) for two green rusts were a (=b) = 3.17 Å and c = 22.52 Å for CGR and a (=b) = 5.50 Å and c = 10.97 Å for SGR with the crystallite size 57.8 nm in diameter from (003) reflection and 40.1 nm from (001) reflections, respectively. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) results showed that both CGR and SGR had typical hexagonal plate-like crystal morphologies but their chemical composition is different in the content of C and S. In addition, Fourier transform infrared (FT-IR) spectroscopy analysis revealed that carbonate (CO32-) and sulfate (SO42-) molecules were occupied as interlayer anions of CGR and SGR, respectively. These SEM/EDS and FT-IR results were in good agreement with XRD results. Changes in the solution chemistry (i.e., pH, Eh and residual iron concentrations (Fe(II):Fe(III)) of the mixed solution) were observed as a function of the injection time of hydroxyl ion (OH-) into the iron solution. Three different stages were observed in the formation of both CGR and SGR; precursor, intermediator, and green rust in the formation of both CGR and SGR. This study provides co-precipitation methods for CGR and SGR in a way of the stable synthesis. In addition, our findings for the formation mechanisms of the two green rusts and their physicochemical properties will provide crucial information with researches and industrials in utilizing green rust.

A Study on the Trend and Utilization of Stone Waste (석재폐기물 현황 및 활용 연구)

  • Chea, Kwang-Seok;Lee, Young Geun;Koo, Namin;Yang, Hee Moon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.333-344
    • /
    • 2022
  • The quarrying and utilization of natural building stones such as granite and marble are rapidly emerging in developing countries. A huge amount of wastes is being generated during the processing, cutting and sizing of these stones to make them useable. These wastes are disposed of in the open environment and the toxic nature of these wastes negatively affects the environment and human health. The growth trend in the world stone industry was confirmed in output for 2019, increasing more than one percent and reaching a new peak of some 155 million tons, excluding quarry discards. Per-capita stone use rose to 268 square meters per thousand persons (m2/1,000 inh), from 266 the previous year and 177 in 2001. However, we have to take into consideration that the world's gross quarrying production was about 316 million tons (100%) in 2019; about 53% of that amount, however, is regarded as quarrying waste. With regards to the stone processing stage, we have noticed that the world production has reached 91.15 million tons (29%), and consequently this means that 63.35 million tons of stone-processing scraps is produced. Therefore, we can say that, on a global level, if the quantity of material extracted in the quarry is 100%, the total percentage of waste is about 71%. This raises a substantial problem from the environmental, economical and social point of view. There are essentially three ways of dealing with inorganic waste, namely, reuse, recycling, or disposal in landfills. Reuse and recycling are the preferred waste management methods that consider environmental sustainability and the opportunity to generate important economic returns. Although there are many possible applications for stone waste, they can be summarized into three main general applications, namely, fillers for binders, ceramic formulations, and environmental applications. The use of residual sludge for substrate production seems to be highly promising: the substrate can be used for quarry rehabilitation and in the rehabilitation of industrial sites. This new product (artificial soil) could be included in the list of the materials to use in addition to topsoil for civil works, railway embankments roundabouts and stone sludge wastes could be used for the neutralization of acidic soil to increase the yield. Stone waste is also possible to find several examples of studies for the recovery of mineral residues, including the extraction of metallic elements, and mineral components, the production of construction raw materials, power generation, building materials, and gas and water treatment.

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere (대륙 암석권에서 무기 자연 수소의 성인과 부존 형태)

  • Kim, Hyeong Soo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.313-331
    • /
    • 2022
  • Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility (광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구)

  • Lee, Joon Hak;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.709-716
    • /
    • 2021
  • In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

Synthesis and Structural Study of Extraframework ZrI6Tl119+ Cationic Cluster in Zeolite A (제올라이트 A 동공 내 비골격 ZrI6Tl119+ 양이온 클러스터의 합성과 구조 연구)

  • Hyeon Seung, Lim;Jong Sam, Park;Cheol Woong, Kim;Woo Taik, Lim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.447-455
    • /
    • 2022
  • Fully dehydrated Tl12-LTA (|Tl12|[Si12Al12O48]-LTA,Tl12-A) was treated with 6.0×103 Pa of ZrI4 (g) at 623 K for 72 hr under anhydrous conditions. The crystal structure of product, |Zr0.25I1.5Tl12|[Si12Al12O48]-LTA, was determined by single-crystal crystallography using synchrotron X-radiation in the cubic space group Pm3m (a = 12.337(2) Å). It was refined using all data to the final error index (for the 712 unique reflections for which Fo> 4σ(Fo) R1/wR2= 0.055/0.189. In this structure, octahedral ZrI62- ions center about 25% of the large cavities (Zr-I = 2.91(4) Å). Each coordinates to eight Tl+ ions and they are further bridged by Tl+ ions in the planes of 8-rings to form a cubic three-dimensional ZrI6Tl119+ cationic cluster. About 1.5 Tl+ ions per unit cell moved to deeper side of sodalite cavity after reaction with ZrI4(g). The remaining Tl+ ions occupy well-established cation positions near 6- and 8-rings.

Deformation History of the Pohang Basin in the Heunghae Area, Pohang and Consideration on Characteristics of Coseismic Ground Deformations of the 2017 Pohang Earthquake (Mw 5.4), Korea (포항 흥해지역에서 포항분지의 변형작용사와 2017 포항지진(Mw 5.4) 동시성 지표변형 특성 고찰)

  • Ji-Hoon, Kang
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.485-505
    • /
    • 2022
  • On November 15, 2017, a Mw 5.4 Pohang Earthquake occurred at about 4 km hypocenter in the Heunghae area, and caused great damage to Pohang city, Korea. In the Heunghae area, which is the central part of the Pohang Basin, the Cretaceous Gyeongsang Supergroup and the Late Cretaceous to Early Paleogene Bulguksa igneous rocks as basement rocks and the Neogene Yeonil Group as the fillings of the Pohang Basin, are distributed. In this paper, structural and geological researches on the crustal deformations (folds, faults, joints) in the Pohang Basin and the coseismic ground deformations (sand volcanoes, ground cracks, pup-up structures) of Pohang Earthquake were carried out, and the deformation history of the Pohang Basin and characteristics of the coseismic ground deformations were considered. The crustal deformations were formed through at least five deformation stages before the Quaternary faulting: forming stages of the normal-slip (Gokgang fault) faults which strike (N)NE and dip at high angles, and the high-angle joints of E-W trend regionally recognized in Yeonil Group and the faults (sub)parallel to them, and the conjugate normal-slip faults (Heunghae fault and Hyeongsan fault) which strike E-W and dip at middle or low angles and the accompanying E-W folds, and the conjugate strike-slip faults dipped at high angles in which the (N)NW and E-W (NE) striking fault sets show the (reverse) sinistral and dextral strike-slips, respectively, and the conjugate reverse-slip faults in which the NNE and NNW striking fault sets dip at middle angles and the accompanying N-S folds. Sand volcanoes often exhibit linear arrangements (sub)parallel to ground cracks in the coseismic ground deformations. The N-S or (N)NE trending pop-up structures and ground cracks and E-W or (W)NW trending ground were formed by the reverse-slip movement of the earthquake source fault and the accompanying buckling folding of its hanging wall due to the maximum horizontal stress of the Pohang Earthquake source. These structural activities occurred extensively in the Heunghae area, which is at the hanging wall of the earthquake source fault, and caused enormous property damages here.

A Preliminary Study on the Post-magmatic Activities Occurring at the Gonamsan Gabbroic Rocks in the Pocheon Area (포천지역 고남산 반려암질암 내 발생하는 후기 화성활동에 관한 예비 연구)

  • Lee, Ji-Hyun;Kim, Eui-Jun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.77-95
    • /
    • 2022
  • The Gonamsan gabbroic complex in the Pocheon area, northwestern region of South Korea consists of a variety types of gabbroic rocks and associated Fe-Ti oxide deposits caused by magmatic differentiation. Post-magmatic intrusions (i.e., gabbroic pegmatite and pyroxene-apatite-zircon rocks) partly intruded into the gabbroic rocks. The gabbroic pegmatite occurs in monzodiorite and oxide gabbro of the complex, intimately and spatially associated with high-grade lenticular Fe-Ti oxide mineralization. The pegmatite can be subdivided into plagioclase-amphibole and pyroxene-olivine pegmatite, in which the contact surface is sharp. The plagioclase-amphibole pegmatite comprises plagioclase and amphibole, with lesser amount of pyroxene, ilmenite, sphene, apatite, and biotite. The pegmatite shows plagioclase-amphibole intergranular texture, in which the open space formed by large plagioclase laths (An2-26Ab72-98Or0-2) are infilled by amphibole. The pyroxene-olivine pegmatite is dark gray to black in color and also contains magnetite, ilmenite, spinel, apatite, and calcite as a minor component. The pyroxene (En35-36Fs8-9Wo55) and olivine (Fo84-85Fa15-16) partly show a poikilitic texture defined by smaller euhedral olivine enclosed by coarser clinopyroxene. Fe-Ti oxide minerals consist mainly of magnetite and ilmenite that are found interstitially to earlier formed silicates. Subsequently, they are encompassed by reaction rim (almost of amphibole and biotite) along the boundary with surrounding silicate minerals. Under the microscope, magnetite contains a lot of oxyexsolved ilmenite (trellis type) and spinel, and thereby is weakly enriched in magnetite-compatible elements such as Ti, Al, Mg, and V. The structure and textures at the contact zone as well as mineralogical disequilibrium between gabbroic pegmatite and the host gabbroic rocks suggest that the pegmatite may form as a result of accumulation from Fe-rich melt (or liquid) that occurred somewhere rather than in situ form from the host gabbroic rock during the magmatic differentiation. Consequently, the preliminary study suggests that further study on the post-magmatic activities can not only help us improve our understanding on magmatic fractionation but also provide critical information on Fe-Ti oxide mineralization in gabbroic rocks resulting from the magmatic differentiation.

Comparative Crystal Chemistry of Exchanged by Cs-, Cd-, Pb-, and Sr-synthetic Mordenite Using High Resolution X-ray Powder Diffraction (고분해능 X-선 분말 회절을 이용한 Cs-, Cd-, Pb-, Sr-으로 치환된 합성 모데나이트의 격자상수 비교 연구)

  • Lee, Soojin;Lee, Hyunseung;Seoung, Donghoon;Kim, Pyosang;Kim, Hyeonsu;Lee, Yongmoon
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.345-353
    • /
    • 2022
  • This study aimed to fundamentally understand changes of cell parameters of cation-exchanged mordenites using high resolution X-ray powder diffraction for studies that immobilization of various heavy metal cation using synthesis mordenite (Na6.6Al6.6Si41.4O96·20.4H2O, Na-MOR). As a results of measurement by Thermogravimetric analysis (TGA), it was confirmed that 19.4, 20.4 water molecules per unit cell were present in monovalent-cation substituted MOR (Cs-MOR, Na-MOR), and 21, 23.1, 23.2 water molecules per unit cell were present in divalent-cation substituted MOR (Pb-MOR, Sr-MOR, Cd-MOR). The space group of all the samples were identified as Cmcm belonging to the orthorhombic crystal system. Compared to Na-MOR, starting material, relative peak intensity of (110) and (200) is significantly changed after cation substitution whereas peak position is almost similar. Also, (220) peak that was not found in Na-MOR was clearly observed in Pb-, Cd- and Sr-exchanged MOR. Thus, it was estimated that changes of atomic distribution usually occurred on ab-plane while changes of cell parameters were little. Detailed changes in the cell parameters of cation-exchanged mordenites were derived from whole profile fitting method using the GSAS suite program. Changes in the axial lengths and unit cell volume of cation substitution showed different relationship depending on ionic radius and charge number. In case of monovalent-cation substituted MOR, the length of a-axis increases whereas the length of b- and c-axis decrease by absorbed cation radius. In the case of divalent-cation exchanged MOR, the length of a-axis usually decreases while the length of b- and c-axis increases by cation radius. It was confirmed that unit cell volume of monovalent and divalent cation substituted MORs had an independent tendency by cation radius.