DOI QR코드

DOI QR Code

Characterization of Synthesized Carbonate and Sulfate Green Rusts: Formation Mechanisms and Physicochemical Properties

합성된 탄산염 및 황산염 그린 러스트의 형성 메커니즘과 이화학적 특성 규명

  • Lee, Seon Yong (Department of Earth and Environmental Sciences, Korea University) ;
  • Choi, Su-Yeon (Department of Earth and Environmental Sciences, Korea University) ;
  • Chang, Bongsu (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Young Jae (Department of Earth and Environmental Sciences, Korea University)
  • 이선용 (고려대학교 지구환경과학과) ;
  • 최수연 (고려대학교 지구환경과학과) ;
  • 장봉수 (고려대학교 지구환경과학과) ;
  • 이영재 (고려대학교 지구환경과학과)
  • Received : 2022.06.13
  • Accepted : 2022.06.22
  • Published : 2022.06.30

Abstract

Carbonate green rust (CGR) and sulfate green rust (SGR) commonly occur in nature. In this study, CGR and SGR were synthesized through co-precipitation, and their formation mechanisms and physicochemical properties were investigated. X-ray diffraction (XRD) and Rietveld refinement showed both CGR and SGR with layered double hydroxide structure were successfully synthesized without any secondary phases under each synthetic condition. Refined structural parameters (unit cell) for two green rusts were a (=b) = 3.17 Å and c = 22.52 Å for CGR and a (=b) = 5.50 Å and c = 10.97 Å for SGR with the crystallite size 57.8 nm in diameter from (003) reflection and 40.1 nm from (001) reflections, respectively. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) results showed that both CGR and SGR had typical hexagonal plate-like crystal morphologies but their chemical composition is different in the content of C and S. In addition, Fourier transform infrared (FT-IR) spectroscopy analysis revealed that carbonate (CO32-) and sulfate (SO42-) molecules were occupied as interlayer anions of CGR and SGR, respectively. These SEM/EDS and FT-IR results were in good agreement with XRD results. Changes in the solution chemistry (i.e., pH, Eh and residual iron concentrations (Fe(II):Fe(III)) of the mixed solution) were observed as a function of the injection time of hydroxyl ion (OH-) into the iron solution. Three different stages were observed in the formation of both CGR and SGR; precursor, intermediator, and green rust in the formation of both CGR and SGR. This study provides co-precipitation methods for CGR and SGR in a way of the stable synthesis. In addition, our findings for the formation mechanisms of the two green rusts and their physicochemical properties will provide crucial information with researches and industrials in utilizing green rust.

본 연구는 자연계에서 가장 흔하게 관찰되는 두 그린 러스트(green rust) 광물인 carbonate green rust (CGR)과 sulfate green rust (SGR)을 공침법(co-precipitation)을 통해 각각 합성하고, 이들의 형성 메커니즘 및 이화학적 특성들을 체계적으로 규명하였다. X-선 회절(XRD) 분석 및 리트벨트 정련 수행 결과, 본 합성 조건에서 이차광물상 없이 이중층수산화물로서 CGR과 SGR이 합성됨을 확인하였다. 또한, 각각의 구조 파라미터는 CGR의 경우 a(=b)축 = 3.17 Å, c축 = 22.52 Å이고, SGR의 경우 a(=b)축 = 5.50 Å, c축 = 10.97 Å이며, 이들의 미결정 크기는 각각 (003)면 기준 57.8 nm와 (001)면 기준 40.1 nm로 밝혀졌다. 주사전자현미경/에너지 분산형 분광분석(SEM/EDS) 결과, CGR과 SGR은 모두 육각 판상의 전형적인 이중층수산화물 결정 형상을 보이지만 탄소(C)와 황(S)의 함량은 서로 다르게 나타났다. 퓨리에 변환 적외선(FT-IR) 분광 분석결과, 탄산염(CO32-)와 황산염(SO42-) 이온들이 각각 CGR과 SGR의 층간 음이온으로 밝혀졌고, 이는 XRD를 활용한 광물상 동정 결과와 잘 일치한다. 철 용액으로의 수산화이온(OH-) 주입 시간에 따른 혼합 용액의 pH와 Eh, 그리고 잔류 철 농도의 비율(Fe(II):Fe(III)) 측정 결과, 시간에 따른 차이는 있지만 두 green rusts 모두 1단계 전구체 형성, 2단계 중간 생성물로의 상변환, 그리고 3단계 green rust로의 상변환과 에이징에 의한 결정성장으로 이어지는 결정 형성 메커니즘을 보이는 것으로 판단된다. 본 연구는 공침법을 통해 CGR과 SGR을 안정적으로 합성하고 이들의 형성 메커니즘과 이화학적 특성을 규명함으로써, green rust를 활용한 응용 연구 및 산업 활용에 원천 기초자료를 제공할 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1I1A1A01073846 and No. 2021R1A2C100601111). 또한, 고려대학교에서 지원된 연구비로 수행되었음. 모든 저자들은 본 논문의 최종본 제출에 동의하였음.

References

  1. Ahmed, I.A., Benning, L.G., Kakonyi, G., Sumoondur, A.D., Terrill, N.J. and Shaw, S., 2010, Formation of green rust sulfate: a combined in situ time-resolved X-ray scattering and electrochemical study. Langmuir, 26(9), 6593-6603. https://doi.org/10.1021/la903935j
  2. Aissa, R., Ruby, C., Gehin, A., Abdelmoula, M. and Genin, J.-M., 2004, ICAME 2003, Springer, 445-451.
  3. Aissa, R., Ruby, C., Gehin, A., Abdelmoula, M., & Genin, J.M., 2004, Synthesis by Coprecipitation of Al-Substituted Hydroxysulphate Green Rust FeII4FeIII(2-y)AlIIIy(OH)12SO4, nH2O. In ICAME 2003, Springer, Dordrecht, 445-451.
  4. Ayala-Luis, K.B., Koch, C.B. and Hansen, H.C.B., 2010, One-pot synthesis and characterization of FeII-FeIII hydroxide (green rust) intercalated with C9-C14 linear alkyl carboxylates. Applied Clay Science, 50(4), 512-519. https://doi.org/10.1016/j.clay.2010.10.002
  5. Barthelemy, K., Naille, S., Despas, C., Ruby, C. and Mallet, M., 2012, Carbonated ferric green rust as a new material for efficient phosphate removal. Journal of Colloid and Interface Science, 384(1), 121-127. https://doi.org/10.1016/j.jcis.2012.06.038
  6. Bergmann, J., Friedel, P., Kleeberg, R., 1998, BGMN, a new fundamental parameters based Rietveld program for laboratory X-ray sources, its use in quantitative analysis and structure investigations, CPD Newsl., 20, 5-8.
  7. Brookins, D.G., 2012, Eh-pH diagrams for geochemistry, Springer Science & Business Media.
  8. Chaves, L.H., 2005, The role of green rust in the environment: a review. Revista Brasileira de Engenharia Agricola e Ambiental, 9, 284-288. https://doi.org/10.1590/S1415-43662005000200021
  9. Chen, B., Zhang, Z., Kim, S., Lee, S., Lee, J., Kim, W. and Yong, K., 2018, Ostwald ripening driven exfoliation to ultrathin layered double hydroxides nanosheets for enhanced oxygen evolution reaction. ACS applied materials & interfaces, 10(51), 44518-44526. https://doi.org/10.1021/acsami.8b16962
  10. Choi, J.Y., Sim, S.G. and Lee, U.J., 2006, 토양 중 mineral 에 의한 염소계 유기화합물 분해 특성 연구. Proceedings of the Korean Society of Soil and Groundwater Environment Conference, 04a, 33-36.
  11. Danoux, C., Pereira, D., Dobelin, N., Stahli, C., Barralet, J., van Blitterswijk, C. and Habibovic, P., 2016, The effects of crystal phase and particle morphology of calcium phosphates on proliferation and differentiation of human mesenchymal stromal cells. Advanced Healthcare Materials, 5(14), 1775-1785. https://doi.org/10.1002/adhm.201600184
  12. Doebelin, N., Kleeberg, R., 2015, Profex: a graphical user interface for the Rietveld refinement program BGMN, Journal of Applied Crystallography, 48, 1573-1580 (https://doi.org/10.1107/S1600576715014685).
  13. Drissi, H., Refait, P. and Genin, J.-M., 1994, The oxidation of Fe(OH)2 in the presence of carbonate ions: structure of carbonate green rust one. Hyperfine interactions, 90(1), 395-400. https://doi.org/10.1007/BF02069145
  14. Drissi, S., Refait, P., Abdelmoula, M. and Genin, J.-M.R., 1995, The preparation and thermodynamic properties of Fe(II)-Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corrosion Science, 37(12), 2025-2041. https://doi.org/10.1016/0010-938X(95)00096-3
  15. Duval, S., Baymann, F., Schoepp-Cothenet, B., Trolard, F., Bourrie, G., Grauby, O., Branscomb, E., Russell, M.J. and Nitschke, W., 2019, Fougerite: The not so simple progenitor of the first cells. Interface Focus, 9(6), 20190063. https://doi.org/10.1098/rsfs.2019.0063
  16. Fu, D., Keech, P.G., Sun, X. and Wren, J.C., 2011, Iron oxyhydroxide nanoparticles formed by forced hydrolysis: dependence of phase composition on solution concentration. Physical Chemistry Chemical Physics, 13(41), 18523-18529. https://doi.org/10.1039/c1cp20188c
  17. Genin, J.-M., Olowe, A., Refait, P. and Simon, L., 1996, On the stoichiometry and pourbaix diagram of Fe(II)-Fe(III) hydroxy-sulphate or sulphate-containing green rust 2: An electrochemical and Mossbauer spectroscopy study. Corrosion Science, 38(10), 1751-1762. https://doi.org/10.1016/S0010-938X(96)00072-8
  18. Genin, J.-M., Refait, P., Simon, L. and Drissi, S., 1998, Preparation and Eh-pH diagrams of Fe(II)-Fe(III) green rust compounds; hyperfine interaction characteristics and stoichiometry of hydroxy-chloride,-sulphate and-carbonate. Hyperfine interactions, 111(1), 313-318. https://doi.org/10.1023/A:1012638724990
  19. Genin, J.-M.R. and Ruby, C., 2004, Anion and cation distributions in Fe(II-III) hydroxysalt green rusts from XRD and Mossbauer analysis (carbonate, chloride, sulphate,...); the "fougerite" mineral. Solid state sciences, 6(7), 705-718. https://doi.org/10.1016/j.solidstatesciences.2004.03.021
  20. Hansen, H., 1989, Composition, stabilization, and light absorption of Fe(II)-Fe(III) hydroxy-carbonate ('green rust'). Clay Minerals, 24(4), 663-669. https://doi.org/10.1180/claymin.1989.024.4.08
  21. Halevy, I., Alesker, M., Schuster, E. M., Popovitz-Biro, R., and Feldman, Y. (2017). A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10(2), 135-139. https://doi.org/10.1038/ngeo2878
  22. Kim, M.-S., Kim, T.-H., Seo, Y.S., Oh, J.-M. and Park, J.K., 2017, A novel synthesis of an Fe3+/Fe2+ layered double hydroxide ('green rust') via controlled electron transfer with a conducting polymer. Dalton Transactions, 46(24), 7656-7659. https://doi.org/10.1039/c7dt00731k
  23. Lee, S.Y., Choi, J.-W., Song, K.G., Choi, K., Lee, Y.J. and Jung, K.-W., 2019a, Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis. Composites Part B: Engineering, 176, 107209. https://doi.org/10.1016/j.compositesb.2019.107209
  24. Lee, S.Y., Jung, K.-W., Choi, J.-W. and Lee, Y.J., 2019b, In situ synthesis of hierarchical cobalt-aluminum layered double hydroxide on boehmite surface for efficient removal of arsenate from aqueous solutions: effects of solution chemistry factors and sorption mechanism. Chemical Engineering Journal, 368, 914-923. https://doi.org/10.1016/j.cej.2019.03.043
  25. Lee, S.Y., Kim, Y., Chang, B. and Lee, Y.J. 2020a, Enhanced Arsenic (III and V) Removal in Anoxic Environments by Hierarchically Structured Citrate/FeCO3 Nanocomposites. Nanomaterials, 10(9), 1773. https://doi.org/10.3390/nano10091773
  26. Lee, S.Y., Jo, U., Chang, B. and Lee, Y.J., 2020b, Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite. Crystals, 10(11), 960. https://doi.org/10.3390/cryst10110960
  27. Mao, Y., Zhang, Z., Zhan, H., Sun, J., Li, Y., Su, Z., Chen, Y., Gao, X., Huang, X. and Gu, N., 2022, Revealing the crystal phases of primary particles formed during the coprecipitation of iron oxides. Chemical Communications, 58(38), 5749-5752. https://doi.org/10.1039/D2CC01617F
  28. Lee, S.Y., Chang, B., Kim, Y., Jang, H. and Lee, Y.J. (2022) Characterization of arsenite (As(III)) and arsenate (As(V)) sorption on synthetic siderite spherules under anoxic conditions: Different sorption behaviors with crystal size and arsenic species. Journal of Colloid and Interface Science. 613, 499-514. https://doi.org/10.1016/j.jcis.2022.01.066
  29. Min, J.H., Baik, M.H., Lee, J.K., & Jeong, J.T., 2013, Sorption of I and Se onto Green Rusts with Different Interlayer Anions, GR(CO32-) AND GR(Cl-). Journal of Nuclear Fuel Cycle and Waste Technology, 1(1), 57-63. https://doi.org/10.7733/JNFCWT.2013.1.1.57
  30. Moon, J.W., Moon, H.S., Song. Y., Kang, J.K. and Roh, Y., 2003, Investigation of Corrosion Minerals from the Remediation for TCE-Contaminate Groundwater. Journal of the Mineralogical Society of Korea, 16(1), 107-123.
  31. Niles, P.B., Catling, D.C., Berger, G., Chassefiere, E., Ehlmann, B.L., Michalski, J.R., Morris, R., Ruff, S.W., and Sutter, B., 2013, Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Science Reviews, 174(1-4), 301-328. https://doi.org/10.1007/s11214-012-9940-y
  32. Refait, P., Memet, J.B., Bon, C., Sabot, R., and Genin, J.M., 2003, Formation of the Fe(II)-Fe(III) hydroxysulphate green rust during marine corrosion of steel. Corrosion Science, 45(4), 833-845. https://doi.org/10.1016/S0010-938X(02)00184-1
  33. Ruby, C., Aissa, R., Gehin, A., Cortot, J., Abdelmoula, M. and Genin, J.-M., 2006, Green rusts synthesis by coprecipitation of FeII-FeIII ions and mass-balance diagram. Comptes Rendus Geoscience, 338(6-7), 420-432. https://doi.org/10.1016/j.crte.2006.04.008
  34. Sagoe-Crentsil, K.K. and Glasser, F.P., 1993, "Green rust", iron solubility and the role of chloride in the corrosion of steel at high pH. Cement and concrete research, 23(4), 785-791. https://doi.org/10.1016/0008-8846(93)90032-5
  35. Sihn, Y. and Yoon, I.H., 2020, Aqueous U(VI) removal by green rust and vivianite at phosphate-rich environment. Membrane and Water Treatment, 11(3), 207-215. https://doi.org/10.12989/mwt.2020.11.3.207
  36. Simon, L., Francois, M., Refait, P., Renaudin, G., Lelaurain, M. and Genin, J.-M.R., 2003, Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis. Solid state sciences, 5(2), 327-334. https://doi.org/10.1016/S1293-2558(02)00019-5
  37. Usman, M., Abdelmoula, M., Hanna, K., Gregoire, B., Faure, P. and Ruby, C., 2012a, FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology. Journal of Solid State Chemistry, 194, 328-335. https://doi.org/10.1016/j.jssc.2012.05.022
  38. Usman, M., Hanna, K., Abdelmoula, M., Zegeye, A., Faure, P. and Ruby, C., 2012b, Formation of green rust via mineralogical transformation of ferric oxides (ferrihydrite, goethite and hematite). Applied Clay Science 64, 38-43. https://doi.org/10.1016/j.clay.2011.10.008
  39. Usman, M., Byrne, J., Chaudhary, A., Orsetti, S., Hanna, K., Ruby, C., Kappler, A. and Haderlein, S., 2018, Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals. Chemical reviews, 118(7), 3251-3304. https://doi.org/10.1021/acs.chemrev.7b00224
  40. YSI Environmental, 2005, Measuring ORP on YSI 6-Series sondes: Tips, cautions and limitations. Technical note. (Available at: https://www.ysi.com/File%20Library/Documents/Technical%20Notes/T608-Measuring-ORP-on-YSI6-Series-Sondes-Tips-Cautions-and-Limitations.pdf).
  41. Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., Gorby, Y.A. and Smith, S.C., 2002, Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiology Journal, 19(2), 179-207. https://doi.org/10.1080/01490450252864271