• Title/Summary/Keyword: mineral soil

Search Result 1,250, Processing Time 0.03 seconds

A Mathematical Model Development for Microbial Arsenic Transformation and Transport

  • Lim, Mi-Sun;Yeo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.318-322
    • /
    • 2004
  • Arsenic is a toxic and carcinogenic metalloid, whose sources in nature include mineral dissolution and volcanic eruption. Abandoned mines and hazardous waste disposal sites are another major source of arsenic contamination of soil and aquatic systems. To predict concentrations of the toxic inorganic arsenic in aqueous phase. the biogeochemical redox processes and transport behavior need to be studied together and be coupled in a reactive transport model. A new reaction module describing the fate and transport of inorganic arsenic species (As(II)), dissolved oxygen, nitrate, ferrous iron, sulfate, and dissolved organic carbon are developed and incorporated into the RT3D code.

  • PDF

Characteristics of Volcanic Ash Soils (화산회토(火山灰土)의 특성(特性)에 관(關)하여)

  • Shin, Yong Hwa;Kim, Hyong Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.113-119
    • /
    • 1975
  • Volcanic Ash Soils are widely distributed in Jeju island, and constitute the important upland soils which are either presently being cultivated or are suitable for reclaiming. The characteristics of Volcanic Ash Soils according to data made available by previous studies in Jeju and the outside of the country are as following: The most conspicuous mineralogical property is the presence of amorphous mineral colloids. The colloids have large and highly reactive surface to which the common physical and chemical properties are related. Soils are low in bulk density and higher both in porosity and permeability. Accumulation of humus in the upper part of soil is found in great quantity. Cation exchange capacity is high mainly due to high humus content, but the absorbing intensity of ammonium and potassium is weaker than that of crystalline clays. The phosphate absorption coefficient is extremely high and deficiency of minor element may occur both crops and animals. Soils are densely populated with actinomycetes and anaerobic bacteria. Nitrification and activity of urease are distinctly stronger than that of non-Volcanic Ash Soils.

  • PDF

Experimental on the Accuracy of Soil Water Content Measurement Using TDR (TDR을 이용한 토양함수비 측정의 정확성에 대한 실험)

  • 윤춘경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.86-96
    • /
    • 1999
  • Laboratory experiment was performed for the TDR to measure the soil moisture, and the results, were compared with the design water content and the one measured by oven-try method. Sand and kaolinite were used . Varaiables for the experiment were water content (10-50%), void ration (0.7 -1.3), mixture rate of kaolinite (10-30%), and measurement methods (TDR and oven-dry). In all cases , TDR method showed very accurage and reliable results , and average error and error range were far lews than the oven-dry method which is widely used. Considerable error was noticed when water contnet was 50% where saturation was achieved for both methods. Therefore, TDR was thought to be applicable to the field moisture measurement if it is unsaturated. For field scale application of TDR, more research and verification of the accuracy with diverse soil conditions including physical ,chemical and mineral properties are recommended.

  • PDF

Effects of Soil Chemical Properties in Orchards on 'Niitaka' Pear Quality (과원토양의 화학적 환경이 신고 배의 품질에 미치는 영향)

  • Kim, Ik-Youl;Chang, Tae-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.253-259
    • /
    • 2008
  • Soil environmental conditions can affect nutrient availability during growth stage of tree fruit. We investigated the cause of disorderd fruit by the influence of soil chemical properties in orchard soil, composition of mineral nutrient in leaves and fruit to occur physiological disorderd fruit at four locations (Ulsan, Gyeongju, Pyeongtaek, Ansung) compared to healthy. There were significantly different (P=0.05) in exchangeable Ca, K, Mg and total nitrogen content in orchard soil between physiological disordered fruit and healthy fruit. The exchangeable Ca content in orchard soil caused by physiological disordered fruit was statistically lower than that of healthy fruit. However, exchangeable K, Mg and total nitrogen contents were higher than that healthy (P=0.05). There was a significant difference (P=0.05) in Ca content between physiological disordered fruit and healthy. Ca content in fruit flesh of physiological disorderedfruit was statistically lower than that of healthy. The physiological disordered fruit was a higher ratio of Mg/Ca in fruit flesh and peel compared to healthy fruit and also the ratios of N/Ca and K/Ca in a leaf were higher. The negative correlation between Ca and K, and Ca and Mg was detected in the fruit flesh of physiological disordered fruit. Therefore, we concluded that insufficient Ca content in fruit may cause 'the physiological disorder' pomelo disease and high content of N, exchangeable K and Mg ion in the soil solution might be disturbs exchangeable Ca ion to be absorbed in fruit.

Selective Removal of Arsenic Compounds from the Contaminated Paddy Soil in China Using Froth Flotation Technique (포말부선 기술을 이용한 중국 오염농경지내 비소화합물의 선택적 제거)

  • Lee, Seungwoo;Jeon, Chilsung;Lee, Eunseong;Yoo, Kyungmin;Choi, Junhyun;Kim, Hyunjung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.343-352
    • /
    • 2016
  • Effects of grinding time and chemicals dosage in arsenic removal from contaminated paddy soil in China were investigated using lab scale attrition and froth flotation combining process. Arsenic concentration in the field soil was 76.51 mg/kg, exceeding Korean and Chinese standards, and predominant arsenic compounds fraction in sequential extraction was "residual" (over 80%). After wet sieving, soil with >2 mm and < 0.038 mm showed concentration lower than 'Warning Level' in Korea. Soil with 0.038-0.075 mm, showing the highest concentration, was discarded since it occupied minor weight fraction (10.1%). Thus soil between 0.075 and 2 mm was only used in the combining process. The highest Arsenic concentration in progeny fragments smaller than 0.038 mm reached up to 981.66 mg/kg after 5 min of attrition. Optimal dosage of collector ($C_5H_{11}OCS_2K$) and modifier ($Na_2S$ and $CuSO_4$) in froth flotation process for the selective separation of the chipped progeny particles from the parent fragments were determined both as 200 g/ton. Arsenic removal efficiency in froth flotation process was 38.47% and it was increased to 72.74% in additional flotation process, scavenging. Average arsenic concentration after overall process - wet sieving, attrition and froth flotation - was estimated to 16.45 mg/kg.

Effects of Fly Ash on Heavy Metal Contents in Percolated Water of Paddy Soil (석탄회 시용이 논 토양수중의 중금속성분 용출에 미치는 영향)

  • Kim, Yong Woong;Yoon, Chung Han;Shin, Bang Sup;Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.236-242
    • /
    • 1996
  • This study was conducted to investigate the changes of heavy metals in percolated water of paddy soil in which rice was cultivated in conditions of 0%, 5%. 30% addition of bituminous and anthracite fly ash respectively. In cultivated plot, the contents of Fe in percolated water increased gradually during the cultivation. But there was no sharp difference of Fe contents in fly ash treated plots. The contents of Mn in percolated water increased gradually during the cultivation and was high in the cultivated plot. But difference in the contents of Mn among plots not clear. The contents of Zn in percolated water was highest during 20-25 days in the cultivation, thereafter decreased gradually. The fly ash did not cause to increase the contents of Zn in percolated water. The contents of Cu in percolated water decreased through the cultivation. Fly ash treatment did not cause to increase the contents of Cu in percolated water. The contents of Pb in percolated water decreased gradually over the cultivation. Fly ash treatment did not largely influence to Pb percolation. In mid-July. Pb did not almost appeared in percolated water. The contents of Cd was highest about 15 days of the transplant, thereafter decreased gradually. After 40 day of the cultivation, leach of Cd stopped. When fly ashes were applied in paddy soil, the contents of heavy metals in percolated water was not so much compared with control plot. It seems that originally low contents of heavy metals in fly ash and decrease in solubility of heavy metals in a relatively high soil pH make it possible to use fly ash as a soil conditioner.

  • PDF

Estimation of Saturation Velocity in Soils During Rainfall using Soil Box Test (모형토조실험을 이용한 강우시 토층의 포화속도 산정)

  • Kim, Chul-Min;Song, Young-Suk;Kim, Hak-Joon
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.377-385
    • /
    • 2015
  • We constructed a model test apparatus to evaluate the dependence of the saturation velocity (Vs) in soils on rainfall intensity (IR). The apparatus comprises a soil box, a rainfall simulator, and measuring sensors. The model grounds (60 cm × 50 cm × 15 cm) were formed by Joomunjin standard sand with a relative density of 75%. The rainfall simulator can control the rainfall intensity to reenact the actual rainfall in a soil box. Time Domain Reflectometer (TDR) sensors and tensiometers were installed in the soils to measure changes in the volumetric water content and matric suction due to rainfall infiltration. During the tests, the soil saturation was determined by raising the groundwater table, which was formed at the bottom of the soil box. [Please check that the correct meaning has been maintained.] The wetting front did not form at the ground surface during rainfall because the soil particles were uniform and the coefficient of permeability was relatively high. Our results show that the suction stress of the soils decreased with increasing volumetric water content, and this effect was most pronounced for volumetric water contents of 20%-30%. Based on a regression analysis of the relationship between rainfall intensity and the average saturation velocity, we suggest the following equation for estimating the saturation velocity in soils: Vsavg (cm/sec) = 0.068IR (mm/hr).

Characteristics Analysis of Mudstone Weathered Soils in the landslide Area using Statistical Technique (통계기법에 의한 산사태발생지역 이암 풍화토층의 토질특성 분석)

  • Hwang, Eui-Soon;Chung, Dae-Seouk;Kim, Kyeong-Su;Lee, Moon-Se;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.31-41
    • /
    • 2013
  • In this study, the properties of mudstone weathered soils related to landslides were analyzed at the area of landslide induced by heavy rainfall in Pohang. The soil tests were carried out to the soils obtained from landslide and non landslide sites, and the soil properties were investigated. The correlation between soil properties and landslides were analyzed using statistical technique, and then the soil factors were extracted from the correlation analysis. The correlation equation which can calculate the coefficient of permeability influenced on landslides was proposed using the soil factors. As the result of analysis, the porosity and unit weight of soils from the landslide area is smaller than those of soils from the non landslide area. The soils with poor grain size distribution and loose unit weight are prone to landslides because the soils have a large void ratio and a low unit weight. The permeability of soils from the landslide area is larger than that of soils from the non landslide area. According to the result of correlation analysis, the effective grain size, the saturated unit weight and silt and clay contents are evaluated as the influence factors. These factors were considered to estimate the coefficient of permeability of mudstone weathered soils.

Soil Mineral Nutrients and Microbes Are Responsible for Large Patch Disease Caused by Rhizoctonia solani AG2-2 in Zoysiagrass Turf (골프장 한국잔디의 Rhizoctonia solani AG2-2에 의한 Large Patch 발생 토양에서 근권 미생물과 무기영양 평가)

  • Chang, Tae-Hyun;Ru, Yeon-Ju;Lee, Yong-Se
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.113-126
    • /
    • 2007
  • Mineral nutrients and population dynamics of soil microbes in the root zones of zoysiagrass infected by Rhizoctonia solani AG2-2 and that of healthy plants were sampled from ten golf courses using a cup cutter(diameter $10\;cm\;{\times}\;8\;cm$ deep). Analysis of variance(ANOVA) showed significant differences in content of $NO_3$-N(P = 0.05), $NH_4$-N(P = 0.1), and K(P = 0.1) between infected and healthy samples. The content of $NO_3$-N in the soils of large patch was 9.49 mg/kg and that in soil of healthγ plants was 7.02 mg/kg. However, the content of $NH_4$-N in the soil of large patch was 12.02 mg/kg whereas 14.40 mg/kg for the soil under the healthy plants. The content of K in the soil of large patch was lower than that of soil of healthy plants. There was few numbers of Pseudomonas colonies In the soils of large patch compared to that of healthy plants. These results indicated that the content of $NO_3$-N, NH4-N, and K and the microbial population dynamics in root zones correlated to occurrence of large patch.

A Study on the Development of Soil Neutrailizing-agent using Waste Materials (Waste-lime, Oyster, Bottom-ash) (폐자원(폐석회, 굴패각, 바닥재)을 이용한 토양 중화제 개발 연구)

  • Oh, SeungJin;Cho, Mihyeon;Park, Chan-O;Jung, Moon-Ho;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.92-101
    • /
    • 2012
  • Korea shows the soil pH is 5.8 ~ 6.2 by many factors including the geological structure and climate condition. There is known as the cause for soil acidification by weathering of the mineral, excessive use of the chemical fertilizer, and extensively diffused acid rain. The purpose of research is environmentally-friendly material neutralization technology development utilizing the waste resources against by acid soil. The experiment analyze the physico-chemical property of the acid soil and waste resource materials (waste lime, oyster shell, bottom ash). The Batch-Test was performed under 3 stage. As a result, the acid soil showed up acid soil about 3.19. And waste lime, oyster, bottom ash showed the alkalinity with 9.62, 10.08, 9.17. In case of 1 batch-test experimental result, waste lime and oyster shell, the alkalinity was shown over 7.5 and the good efficiency was showed, on the other hands, the bottom ash showed the pH 4 the neutralization efficiency which is low. waste resource materials to be applied to 2 steps was chosen as the waste lime except the bottom ash and oyster. In 2 step batch-test experiment, it was exposed to be the most appropriate in case of doing the combination ratio of the waste lime and oyster shell with 9 : 1. It was exposed to be efficient most in the effeciency and aspect of economical efficiency combination ratio of the soil and materials was 9.6 : 0.6 with 3 step batch-test experimental result.